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Chinook salmon habitats and life histories
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Consistent monitoring
needed across habitats
and life stages!




Puget Sound Salmon Habitat Status and
Trends Monitoring Program (PSHSTMP)

Objectives:

1. Consistent habitat metrics at MPG scales for
major habitat strata

— Large river and floodplains

— Large river deltas

- Nearshore

2. Census-based metrics using readily available
remote sensing data

3. Detect habitat status AND trends
4. Metrics related to VSP parameters

5. Support regional recovery efforts and
programs
- ESA recovery evaluations

- PSP Vital Signs and Indicators
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PSHSTMP and Regional Salmon Recovery

Large River & Floodplain

Large River Deltas

Nearshore
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Large River and Floodplain Mapping

PSHSTM Program Sampling Strata
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Example of digitized habitat features
in the mainstem and floodplain of a large river

Habitat Features
== Mainstem
= Side_Channel
® Side_Channel_Nodes I-
== Braids
® Braid_Nodes
[ wood Jams

Legend

[ Delta

[ Fioodplain

7] Nearshore 25 50 km
| s s |

First large river and floodplain mapping completed!



Large River and Floodplain Strata

Example of digitized habitat features
in the mainstem and floodplain of a large river

* Habitat Quantity:

— Main channel

Habitat Features

= Mainstem ] gy
. — Side_Channel ' *
- 5 I de Ch an n el ® Side_Channel_Nodes | 4 )
i

== Braids

® Braid_Nodes

— Braid channel o [

— Large wood jams

* Habitat Complexity:

— Side & braid : mainstem

— Side & braid node densities

— Wood jam density

Metrics related to VSP parameters?



Habitat complexity and salmon productivity?

Smolt traps (J. Anderson) Smolt traps and analysis extent
Juvenile e
Fish Trap

USGS
Station

Large River
Extent

Puget Sound
Drainage




Habitat complexity and salmon productivity?

Smolt traps and analysis extent

Exploratory approach

Juvenile
= Fish Trap

— Full subsets LMER regressions e

¢ Station r\

— AICc model selection B Levoe River

Extent

Subyearling productivity > T

— Fry per Spawner (FpS) b -
— Parr per Spawner (PpS)
— Total subyearling per Spawner (SpS)

Factors % '

— Habitat complexity

— Peak flow Recurrence Interval (RI)

— Spawner density (SD)

— Broodyear



Habitat Complexity Metrics

* Metrics highly correlated

* Habitat Quantity #

Complexity

* Use PCA approach

— Non-correlated PCs

— Describes most variation

— Captures complexity patterns

SC : Main

0.21

0.70

0.13

0.75

Correlation matrix for habitat
complexity metrics (Pearson’s r)

BR : Main
SC Node
-0.21 .
Density
BR Node
0.91 -0.02 .
Density
Wood Jam
0.76 0.30 0.65 ]
Density



Habitat Complexity PCA:

Strong spatial gradients in habitat complexity

Metrics high|y correlated PCA biplot of habitat complexity metrics
3_
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Subyearling Chinook Production Rates

Smolt traps (J. Anderson)

Annual Productivity Rates:
Fry per Spawner (FpS)
Parr per Spawner (PpS)
Total subyearling per Spawner (SpS)
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Model Selection Results:
Habitat complexity was a strong predictor of productivity

Model selection
AAICc< 7

All selected models
included PC2 (+)

Best models: PC2 with
SD (-) or RI (-)

PC2 effect strongest
with FpS

Standardized coefficient plots from
selected model sets

Total Subyearling Chinook per Spawner
Standardized Coefficient
-1

-2 0 1 2
| | | | |
logRI (0.25) —— |
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logSD (0.75) R

Fry per Spawner
Standardized Coefficient
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| |
logSD (0.03) T ———
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logRI (0.73) |

Parr per Spawner

Standardized Coefficient
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Partial Regression Plots from Top Models

Total subyearling Chinook per Spawner

e Controlling for other

factors...

— See strong relationships

— Differences in variance

* PC2 effect strongest

with FpS

* SD strong negative
predictor for PpS
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Model Selection Results:
Does habitat complexity buffer productivity?

CV of SpS with
habitat complexity

y:
adjR?=0.78

o PUY
o NOK

CED O NSQ
o ."°Q o GRN
INQ - Go— pyp

STI SKY ..
2 -1 0 1
PC2

O SKA

-0.04x + 0.15

2 3

Less complexity «——» More complexity

1.2

o
o0

o
N

CV fish per spawner
o
(@)}

0.0

y=-0.19x + 0.40
adjR?=0.48

y =-0.03x +0.19
adj R?=0.25

CV of FpS and PpS with

habitat complexity

o logFpS

o ® logPpS
-------- Linear (logFpS)
Linear (logPpS)

PC2
Less complexity <— More complexity

Higher complexity = less variation in productivity!



Habitat Complexity and Restoration:
Does PSHSTMP approach detect change from restoration?

Cedar River example of floodplain restoration

3

a1

|
;;, Floodplain restoration
“ creates new features

- '

Map features from
archived and future
imagery to
evaluate change

Pre-restoration Post-restoration



Side channel length (km)
B

From: Stefanki et al. (In Press). Proof of concept for

Habitat Complexity and Restoration:
Cedar River Example

Map change in habitat over time

[+;]

N

2009 2012 2015
Aerial photograph year

B Restoration [} Visibility [] Natural variation

the SHSTMP status and trends monitoring.

Less complexity <———> More complexity

Measurable change in PC scores
attributed to restoration
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Habitat Complexity and Restoration:
Cedar River Example

* Predicted impact on 5
productivity? z &3
— 10.4-1.8% FpS 3
— 1.7-17.9% PpS I e
Q 0+ CED
* Predicted buffering p e
impacts? RS osor,
2 e
— RI13.5-10-year event S
— 14.4%SD B &
-
2 1 0 i 2 3
PC1

Less complexity —> More complexity



Summary of Findings

Supports hypotheses that higher 3

habitat complexity... 4

— Increases productivity | T

— Reduces annual variation . pemdiamten

Proof of concept for PSHSTMP

— Repeatable and scalable oo o

— Detects system-scale patterns [

— Metrics linked to VSP parameters oo A: P g

— Detects habitat change é_ : § 3 E g g

Next steps and implications... ol MR
pc2




Next Steps and Implications

Complete mapping other strata
— Deltas

— Nearshore

PSHSTM Program Sampling Strata

L
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Il Mainstem and Floodplain (:5. o/




Next Steps and Implications

Chinook Vital Sign Indicator
analysis (Kendall et al.)

FIGURE 1. MEAN CHINOOK SALMON SPAWNER ABUNDANCE IN EACH POPULATION IN PUGET SOUND, SHOWN BY GEOGRAPHIC REGION

1999-2003 vs 2012-2016
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— Smolt to adult return rates o : ,
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— Spawner to spawner rates

Population

(2006). There are no targets available for Skokomish, White, and Green rivers. The +* and -* symbols indicate that the population statistically significantly increased or

gy's Puget Sound Recovery Plan

declined, respectively, over the time period.

L I:f'e h I'S to ry a ttrib u tes Source: Washington Department of Fish and Wildlife, SaST database



Next Steps and Implications

Trends analysis for all MPGs and Strata

=

 Complete trends analysis
— Natural change?

— Restoration?



Conclusions

PSHSTMP should be a high
priority for the Puget Sound
region

— Funding uncertain for FY2019

— Some components with ESRP?

Fills major regional data gaps
and supports regional recovery
efforts...

— ESA recovery evaluations
— PSP Vital Signs
— PSP Common Chinook Indicators

— Recovery targets and prioritization

PSHSTM Program Sampling Strata

_—(\‘)—‘1

I Delta
I Fioodplain
[ Nearshore
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