

I, Clavdivs

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Water & Land Resources Division King County Department of Natural Resources & Parks

WRMS

Integrated Water Resource Modeling System IWRMS

A System of

Integrated Modeling for Water Resource Management

Problem Background

<u>King County Department of</u> <u>Natural Resources & Parks</u>

- Science, Monitoring and Data Management group responsible for evaluating existing County practices and providing science input to County policy making
- Needs "integrated" modeling capability to support scientific investigations and planning efforts

Project Goals

- Integrate disparate set of computational models (land use, watershed, lake, river, and estuary) to model water quantity and quality in Puget Sound region
- Develop integrated suite of tools from problem conception, through modeling, to visualization/ communication – to support the needs of modelers, water quality planners, and natural resource management
- Flexible/extensible not all models identified at this time

PNNL Goals

- Provide flexible, extensible *capability* for model integration and its application to King County/DNRP's problems
- Develop a robust solution that can
 - be applied in other geographic domains
 - Integrate models other than watershed/lake/river
 - Integrate tools other than scientific models
 - Enable users to integrate models/tools without programmer involvement
- Use this effort as model for other jurisdictions/organizations with similar needs

Requirements Analysis

- Wide and varied needs to support a variety of model usage scenarios
- Building on top of PNNL's Framework for Risk Analysis of Multimedia Environments System (FRAMES) would best meet County needs with available funding
- Incorporate 3rd-party commercial off-the shelf software where feasible
 - Data analysis & visualization
 - Distributed computing
- Use <u>participatory design process</u> since many potential users didn't have clear picture of their needs.

IWRMS Computing Architecture

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Water & Land Resources Division King County Department of Natural Resources & Parks

Battelle Memorial Institute All Rights Reserved

Model Connection Framework

- INGRATE RESULTE Integrated Water Resource Meding System Batale Memoral Institut Al Rights Reserved
- Facilitates seamless transfer of information between the variety of models and data sources
- FRAMES is the basis for our MCF
 - Previously developed by PNNL (nearly a decade of research and development)
 - Allows for plug-and-play interchangeability of modelling simulation elements
- Currently extending FRAMES to support collaboration among multiple, simultaneous users

Model Integration Wizard

Model Integration Wizard	- Map Output				
Model Integration Wizard	<pre>north-s.ptt north2-s.ptt north3-s.ptt Nort HSPF FILE FOR DRIVING S Nort Time interval: 60 min Nort No. of curves plotted: Nort Label flag: 0 Nort Plot title: North Cree Nort Y-axis label: Nort Scale info: Ymin: 0. Nort Ymax: 15 Nort Time: 20 Nort Data for each curve (Po Nort Label Nort Flow Rate Nort Alkanlinity Nort Sand Nort Silt Nort Clay Nort Suspended Sed </pre>	EPARATE PLOT PR s Last Point-valued: Pivl: 4 eek 00000 0000 interv 01nt-valued firs LINTYP INT 0 0 0 0 0 0 0 0 0 0	ROGRAM t month in printon 0 Mean-valued: Idelt: 1! Threshold:-0. Vals/inch st, then mean-valu TEQ COLCOD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tables:	New
Step 4 of 4: Output Data Specification	s	¥ 🖌			
Pacific Northwest National Labora	ntory			Water & Land Resource	ces Division

Operated by Battelle for the U.S. Department of Energy

Data Harvester

Data Harvester Manager d3k076

File Edit View Help

Data Harvests:

Name	Frequency	Status	Description	
Lk Washington 1 A	Daily	Completed	Water quality in Lk Wash, based on current projected land use growth.	
Lk Washington 23A	Monthly	In Progress	Water quality in Lk Wash.	
Sammamish River	Once	Failed	Effects of temperature on salmon.	

Filter Data Harvests by all fields

R-

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

🚾 St	udy Manaş	ger							
File	View Help								
Studie	IS:								
Study	ID Status	D Status Stage Name Description		Description)
1	Pending	3/20	Lk Washington Water Quality Scenario 1 A	Water quality in Lk Wash, based on current projected land use growth.			n.		
2	Pending	4/10	Lk Washington Water Quality Scenario 23A	Water quality in Lk Wash.				Î	
3	Pending	1/24	Sammamish River Temperature	Effects of water temperature on salmon.					
			Search All fields						
Activit	ties:								
St	tatus	Activity Nam	e	Agreed	Comp. Date	Staff Member	Hrs	Don	3
1 Pe	ending	Identify and /	Assemble Available Data	16 Oct 2	004	Curtis DeGa	40		^
2 Pe	ending	QC Data		14 Nov 2	2004	Curtis DeGa	60		
3 Pe	ending	Fill Gaps in D	ata	14 Dec 2	2004	Curtis DeGa	100		
4 Pe	ending	Assemble Da	ta into Formatted Input Files	18 Jan 2	005	Curtis DeGa	120		
5 Pe	ending	Identify and /	Assemble Temperature and Water Quality Calibration D	ata Sets 18 Dec 2	2005	Curtis DeGa	120		
6 Pe	ending	Develop Wat	er Balance for CH3D to Match Observed Water Surfac	e Elevation 14 Mar 2	2005	Curtis DeGa	80		
7 Pe	ending	Execute CH3D Model			2005	Curtis DeGa	200		
8 Pe	ending	Evaluate Mat	Evaluate Match of Predicted to Observed Temperature			Curtis DeGa	200		
9 Pe	ending	Write Binary	Annual Hydrodynamic Input Files for ICM Calibration	19 Jun 2	005	Curtis DeGa	40		
10 Pe	ending	Execute ICM Model		20 Jul 20)05	Curtis DeGa	110		
11 Pe	ending	Evaluate Match of Predicted to Observed Temperature			005		14.4.4		
12 Pe	ending	Summary of I		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		Curtis DeGa	140		
13 Pe			Results	20 Oct 2	004	Curtis DeGa Curtis DeGa	140 200		
Restaura and	ending	ldentify Avail	Results able Data	20 Oct 2 16 Jun 2	004 004	Curtis DeGa Curtis DeGa Jeff Burkey	140 200 2		

Distributed Computing

Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy

Project Status

- Demonstrations of initial system functionality in July 2004 and January 2005
- Currently focused on subsystem integration
- Viz/Analysis tool integration to start in Spring '05
- "beta" release expected in July 2005
- Initial system delivery scheduled for December 2005

Expected Results

- Greater speed in producing usable information from existing data
- Ability to use data in new ways...to answer questions that couldn't be answered before
- Ability to inform water resource sampling programs