Metals Removal in the Membrane Bioreactor Wastewater Treatment Process

Bob Bucher
King County Department of Natural Resources & Parks
Wastewater Treatment Division - Technology Assessment Program
Presentation Outline

• “Motivation” for metals analysis in membrane bioreactor (MBR)
• Pilot MBR process configuration
• Pilot MBR metals data evaluation
• Summary
• Further work
Motivation for MBR Pilot Metals Analysis

Effluent Quality
Evaluation of Reuse Options

Removal Efficiency
Evaluation of MBR Process
Impact on Biosolids Quality

Effluent Quality / Removal Efficiency / Fate
Evaluation of MBR Process
Comparison to CAS Process
Impact on Biosolids Quality
Impact of MBR SRT on Metal Removal
Enviroquip MBR Pilot Plant

Operating Conditions
HRT = 6 hrs
SRT = 18 - 50 days
MLSS = 8,000 - 15,000 mg/L
Membrane Plates

0.4 micron pore size
Test Methodology

• Pilot Sample Locations
 – influent
 – effluent
 – mixed liquor
• Sample Frequency
 – monthly
• Sample Type
 – grab
• Metals Analysis
 – Environmental Laboratory Routines
 (06-02-004, 06-03-004, and 06-01-004)
• Sample Planning Assumptions
 – influent metal variability during sample period
 – grab sampling versus 24-hr composite
Pilot MBR Metal Removal Efficiency

Data Source: Petrasek et al, 1983
Pilot MBR Influent Metal Concentrations

<table>
<thead>
<tr>
<th>Metal</th>
<th>Influent Metal Concentrations (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KC MBR</td>
</tr>
<tr>
<td>Cr</td>
<td>0.004</td>
</tr>
<tr>
<td>Cu</td>
<td>0.050</td>
</tr>
<tr>
<td>Pb</td>
<td>0.008</td>
</tr>
<tr>
<td>Ni</td>
<td>0.005</td>
</tr>
<tr>
<td>Zn</td>
<td>0.100</td>
</tr>
</tbody>
</table>

Data Source: Petrasek et al, 1983
Pilot MBR “Estimated” Biosolid Metal Concentrations

<table>
<thead>
<tr>
<th>Metal</th>
<th>WP 2003 (12 samples)</th>
<th>MBR pilot est. (4 samples)</th>
<th>40CFR503 limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean max</td>
<td>mean max</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>7 8</td>
<td>14 18</td>
<td>41</td>
</tr>
<tr>
<td>Cd</td>
<td>4 9</td>
<td>3 4</td>
<td>39</td>
</tr>
<tr>
<td>Cr</td>
<td>37 43</td>
<td>43 46</td>
<td>1,200</td>
</tr>
<tr>
<td>Cu</td>
<td>495 560</td>
<td>578 737</td>
<td>1,500</td>
</tr>
<tr>
<td>Pb</td>
<td>106 132</td>
<td>122 128</td>
<td>300</td>
</tr>
<tr>
<td>Mo</td>
<td>13 22</td>
<td>11 14</td>
<td>tbd</td>
</tr>
<tr>
<td>Ni</td>
<td>29 35</td>
<td>39 43</td>
<td>420</td>
</tr>
<tr>
<td>Se</td>
<td>6 8</td>
<td>13 17</td>
<td>36</td>
</tr>
<tr>
<td>Zn</td>
<td>840 960</td>
<td>715 759</td>
<td>2,800</td>
</tr>
<tr>
<td>Hg</td>
<td>2 4</td>
<td>2 4</td>
<td>17</td>
</tr>
</tbody>
</table>
Pilot MBR versus CAS

Impact of Concentration Factor (CF)

$CF = f (SRT, HRT, MLSS)$
Summary

• Metal Removal Efficiency
 – MBR consistent with literature data
 – MBR exceeds EPA guide with the exception of Zn

• Biosolid Metal Concentrations
 – minimal risk of exceeding current 40 CFR 503 biosolid regulation

• Membrane Bioreactor versus Conventional Activated Sludge
 – MBR as suspended solids filter has impact on final effluent metal concentrations
Future Work

Hollow-Fiber Membrane Bioreactor Biological Phosphorus Removal Pilot
South Treatment Plant
July 2004 - March 2005

Flat-Plate Membrane Bioreactor Peak Hydraulic Loading Pilot
West Point Treatment Plant
June 2004 - March 2005

Effluent Quality / Removal Efficiency / Fate
Evaluation of MBR Process
Comparison to CAS Process
Impact on Biosolids Quality
Impact of MBR SRT on Metal Removal
Metals Removal in the Membrane Bioreactor Wastewater Treatment Process

Questions

Bob Bucher
King County Department of Natural Resources & Parks
Wastewater Treatment Division - Technology Assessment Program