Investigating sources of bacterial contamination in Boise Creek

Raymond Timm, Sally Abella, Debra Bouchard, Dean Wilson, Eric Thompson, Colin Elliott, Debbie Turner, Joe Clark, Stephanie Hess, Jim Devereaux, Ben Budka

King County Department of Natural Resources and Parks
The Problem:

- Washington water quality standards limit fecal coliform bacteria
 - geometric mean 100 cfu×100mL⁻¹
 - and no more than 10% > 200 cfu×100mL⁻¹
- Boise Creek is the biggest contributor of FC to the entire Puyallup TMDL study area
- 92% reduction - dry season (July-October)
- 67% reduction - wet season (November-June)
Are brown trout native to Boise Creek?
The Challenge

• WQ standard *DOES NOT* inform problem resolution
 – FC exist in the gut of warm blooded animals
 – High numbers can warn of dangerous conditions
• Find an approach that *DOES* inform a resolution
 – Spatial and temporal sampling
 – Organisms that discriminate between human and animal sources
2011 Biological parameters

- Fecal coliform bacteria
- *E. coli*
- *Bacteroides spp.*
- *Rhodococcus coprophillius*
- *Bifidobacteria spp.*
FC and E. coli Results by sampling site and period
Comparing FC to E.coli
2011 Boise MST Hits

<table>
<thead>
<tr>
<th>Site</th>
<th>Rhodo</th>
<th>Bifido</th>
<th>Fecals</th>
<th>E.Coli</th>
<th>Bacteroides</th>
<th>Rhodo</th>
<th>Fecals</th>
<th>E.Coli</th>
<th>Bacteroides</th>
<th>Bifido</th>
<th>Fecals</th>
<th>E.Coli</th>
<th>Bacteroides</th>
</tr>
</thead>
</table>
| 1 | | 30 | | | | | 550 | 1300 | | | 440 | 750 | 841 | 1
| 2 | | | 679 | | | 475 | 280 | 740 | 457 | 5 | 470 | 480 | 1208 |
| 3 | 5 | 90 | | | | 679 | 1600 | 2200 | 1086 | 5 | 800 | 960 | 2888 |
| 4 | 110 | 2049 | | 550 | 770 987 | 560 | 680 | 5005 | | 5 | 670 | 1000 | 7820 |
| 5 | | | 110 | 2049 | | 679 | 560 | 680 | 5005 | 5 | 670 | 1000 | 7820 |
| 6 | | | 110 | 2049 | | 679 | 560 | 680 | 5005 | 5 | 670 | 1000 | 7820 |
| 7 | | | 110 | 2049 | | 679 | 560 | 680 | 5005 | 5 | 670 | 1000 | 7820 |
| 8 | | | 110 | 2049 | | 679 | 560 | 680 | 5005 | 5 | 670 | 1000 | 7820 |
| 9 | | | 110 | 2049 | | 679 | 560 | 680 | 5005 | 5 | 670 | 1000 | 7820 |
| 10 | | | 110 | 2049 | | 679 | 560 | 680 | 5005 | 5 | 670 | 1000 | 7820 |
| 11 | | | 110 | 2049 | | 679 | 560 | 680 | 5005 | 5 | 670 | 1000 | 7820 |
| 12 | | | 110 | 2049 | | 679 | 560 | 680 | 5005 | 5 | 670 | 1000 | 7820 |

14-Apr | **17-Jun** | **13-Jul** | **5-Oct**
2012 – What did we learn from last year?

• Expanded sampling site distribution
 – Needed to find baseline values

• Changed temporal nature of sampling
 – 3 straight days sampled in the morning and in the afternoon

• Employed some new / adapted methods
 – Molecular methods for human-specific Bacteroides
 – Found a marker for Ruminant Bacteroidales (RB)
 – Molecular method for Rhodococcus
2012 Biological parameters

- Fecal coliform bacteria
- *E. coli*
- *Bacteroides spp.*
- *Ruminant Bacteroidales* (RB)
- *Rhodococcus coprophillus*
- *Bifidobacteria spp.*
Escherichia coli
Fecal Coliform
Bacteroides
Escherichia coli
Fecal Coliform
Bacteroides
BSE_7TRIBDITCH

Organisms

CFU

6 Aug AM 6 Aug PM 7 Aug AM 7 Aug PM 8 Aug AM 8 Aug PM

Escherichia coli Fecal Coliform Bacteroides
BSE_11TRAILERPKDITCH

- **Organisms**
 - Escherichia coli
 - Fecal Coliform
 - Bacteroides

- **Graph Details**
 - X-axis: 6 Aug AM, 6 Aug PM, 7 Aug AM, 7 Aug PM, 8 Aug AM, 8 Aug PM
 - Y-axis: 10,000, 1,000, 100, 10, 1

- **Map Features**
 - Locations labeled with numbers (1 to 20)
 - Color-coded markers for different organisms
BSE_12ENUMCLAWDITCH

Organisms

<table>
<thead>
<tr>
<th>CFU</th>
<th>6 Aug AM</th>
<th>6 Aug PM</th>
<th>7 Aug AM</th>
<th>7 Aug PM</th>
<th>8 Aug AM</th>
<th>8 Aug PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Escherichia coli
Fecal Coliform
Bacteroides
BSE_16_284THAVESE

Organisms

CFU

Escherichia coli Fecal Coliform Bacteroides

6 Aug AM 6 Aug PM 7 Aug AM 7 Aug PM 8 Aug AM 8 Aug PM

RB RB RB RB RB
Escherichia coli
Fecal Coliform
Bacteroides
What do we know now?

• Sampling period biased results toward human sources
• We have found some sections of stream with definite sources
 – 15 to 14 (96% increase in average FC conc.)
 – Above 19 (16, 17, 18, 20 all essentially baseline – and all on different tributaries)
 – 11 and 12 (13 mostly in compliance with State WQ Std.)
 – 1, 2, 6, 7, 8, 9 (all still problems)
What do we know now?

- Still working to understand new molecular approaches.
- Ruminant Bacteroidales results give us more to think about.
 - *When* and *Where* do positive results indicate domestic animals?
 - Elk and deer?
 - How does this inform the spatio-temporal aspects of our sampling?
King County Science,
KC Stormwater Services,
King County Ag,
King Conservation District,
King County DDES (DPER),
Seattle-King County Health Department,
Wash State Ag Landowner