Nutrient, Phytoplankton, and Dissolved Oxygen Dynamics: What can long-term monitoring tell us?

Stephanie Jaeger, Kimberle Stark, Gabriela Hannach, and Ben Larson

King County Department of Natural Resources and Parks
Goals

• Understanding algal blooms in Central Puget Sound: What do we know about spatial and temporal trends, and what are the effects on water quality?

• How can we contribute to a better understanding of potential eutrophication processes in Puget Sound and the status of the Central Basin?
What is Eutrophication?

- Process which a waterbody becomes overly enriched with nutrients that causes excessive growth of algae and aquatic plants.
- Can lead to oxygen depletion.
Eutrophication

Impairment pathways:
- Over-abundance of algae
- Shifts in phytoplankton dominance & size classes
- Increased harmful algal blooms
- Low dissolved oxygen related to blooms

(Source: Sutula and Senn 2017)
How Can We Monitor for Eutrophication in Marine Systems?

- **Status Indicators**
 1. *Nutrient concentrations and trends*
 - Water clarity

- **Biological Response Indicators**
 2. *Phytoplankton (chlorophyll-a) biomass*
 - Phytoplankton production rate (gross and net)
 3. *Phytoplankton species composition and abundance*
 - Zooplankton species composition and abundance
 4. *Dissolved oxygen levels*
 - Harmful algal blooms & toxin concentrations
 - Macroalgae and eelgrass abundance
Themes

• Place matters
• Variability is the backdrop to assessing change
• Consistent long-term monitoring is key
• Information gaps in understanding of a complex ecosystem
Puget Sound Basins

Source: Puget Sound Partnership
Juan de Fuca data from Ecology & WWU

Central Basin data from King County
Nutrients are one important fuel for primary production

Macronutrients

Dissolved Inorganic Nitrogen (DIN)
- Nitrate+Nitrite
- Ammonia

Phosphate (OP)
Silica (Si)

Dissolved organic matter

Micronutrients (such as iron, copper)
What are measurable variables of potential human nutrient enrichment in Puget Sound?

- Increased levels of nitrogen and phosphorus compounds
- Decrease in Silica:Nitrogen ratio

Nutrient flux:
- Freshwater inputs: N, P, Si, Oc
- Other human N, P sources
- Oceanic inputs: N, P, Si, Low O₂

Nutrients:
- Nitrogen (N)
- Silica (Si)
- Phosphate (P)
What do we observe in nutrients?

• Strong seasonal variability
• Differences in nutrient trends between basins over the last 2 decades and...
• Same trends across macronutrients in a particular basin
• Increase in both DIN and silica (Si) in the Central Basin in the winter and increasing Si:DIN ratio
• Similar ranges of nutrients compared to last century
• Suggests that hydrological cycle and circulation are important contributors
How does Puget Sound compare to other estuaries?

Dissolved Inorganic Nitrogen (DIN)

Source: Cloern & Jassby 2012, modified by B. Larson
Seasonal Patterns Vary by Month & Location

N. Juan de Fuca: Near-Surface (<2-m) Monthly Average (1999 – 2017)

Error bars are ± 1 std. dev.
Seasonal Patterns Vary by Month & Location

Error bars are ± 1 std. dev.

[Graphs showing seasonal patterns of nitrogen levels with error bars indicating ± 1 standard deviation.]
Quartermaster Harbor: shallow, poorly flushed embayment in Central Sound

- Shorter data record (began 2006)
- Too variable for trends from once or twice monthly sampling
- Nitrogen management study completed 2007-2013
 - Sediment flux and groundwater nitrate likely play large roles
Daily & weekly variability can be high near the surface

Early April 2017 - Pt. Williams buoy at 1-m

Nitrate

Phytoplankton use nitrate

Low salinity can increase surface water stability

Winds can mix water

Wind vectors show relative speed and direction wind is coming from
How can we measure trends with high seasonal variability?

- One method = Non-parametric linear trend test by month (seasonal Mann-Kendall)

Point Jefferson – Significant trend at deep depth (200-m) (p-value < 0.05)

Slope = 0.0018 mg/L per year
Est. 6% increase per decade

Period of record is important to consider
Dissolved Inorg. Nitrogen: Trends over 2 decades

<table>
<thead>
<tr>
<th>Site</th>
<th>Years of Data</th>
<th><3-m</th>
<th>Σ0-35-m</th>
<th>Deep (>55-m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brightwater TP</td>
<td>19</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Pt. Jefferson</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Point TP</td>
<td>21</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>South TP</td>
<td>21</td>
<td>NS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pt. Williams</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elliott Bay</td>
<td>21</td>
<td>NS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>East Passage</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- %Change over period of record
- **NS** = Not Significant (p>0.05)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td></td>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Spring</td>
<td>NS</td>
<td></td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

* = TP data thru 2010

Which season is driving this trend?
Trends over 2 decades – stations combined

<table>
<thead>
<tr>
<th>Depth Bin</th>
<th>Dissolved Inorg. Nitrogen (DIN)</th>
<th>Silica</th>
<th>Total Phosphorus*</th>
<th>Silica:DIN Ratio</th>
<th>DIN:TP Ratio*</th>
<th>Salinity</th>
</tr>
</thead>
<tbody>
<tr>
<td><3-m</td>
<td>NS</td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Σ0-35-m</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Deep</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>NS</td>
<td></td>
</tr>
</tbody>
</table>

Similar trends for all nutrients within each basin suggests difference in watershed/ocean balance over this record.

Juan de Fuca

<table>
<thead>
<tr>
<th>Depth Bin</th>
<th>Ortho-P</th>
<th>DIN:OP</th>
</tr>
</thead>
<tbody>
<tr>
<td><3-m</td>
<td>↑</td>
<td>NS</td>
</tr>
<tr>
<td>30-m</td>
<td>↑</td>
<td>NS</td>
</tr>
<tr>
<td>>140-m</td>
<td>↑</td>
<td>NS</td>
</tr>
</tbody>
</table>

Years of Data = 12 – 24 for Central Basin
= 19 yrs for Juan de Fuca

* = TP data thru 2010
Fraser River freshet meets saltwater
(Source: A. Perea)

Potential Drivers

El Niño

Marine Heat Wave

All other tropical storms must bow before El Niño.
(Source: SNL)
How does this compare to historical data collected from 1933 – 1975?

Eugene E. Collias (1926-2017) (Source: Eugene and Dorothy Collias Collection)
Information gaps:

• Variability on short time scales – can we link to drivers over time?
• No complete record of organic nutrient and carbon pools
• Possible that nutrient cycling and remineralization rate changes may play a role
Summary:

• Some increases in all nutrients over last 2 decades in Central Basin and decreases in Strait of Juan de Fuca; though limited to period of record
• Increase or no change in Si:DIN nutrient ratio across sites in both basins
• Similar deep nutrient ranges compared to historical observations, except for lower nutrients in summer in recent decades
• Suggest drivers related to circulation, climate, & hydrological cycle, rather than anthropogenic inputs → Needs exploration
Eutrophication

Impairment pathways:
- Over-abundance of algae
- Shifts in phytoplankton dominance & size classes
- Increased harmful algal blooms
- Low dissolved oxygen related to blooms
Why Measure Chlorophyll-a?
Overall, long-term chlorophyll-a levels in the Central Basin (QMH excluded) do not indicate signs of eutrophication but do show climate anomaly effects.

Chlorophyll-a

- A lot of seasonal/interannual variation
- Concentrations and timing of spring bloom are generally similar over past 20 years
- Quartermaster Harbor different dynamics

Overall, long-term chlorophyll-a levels in the Central Basin (QMH excluded) do not indicate signs of eutrophication but do show climate anomaly effects.
Chlorophyll-a
Seasonal Dynamics
Spring bloom timing

Feb | Mar | Apr | May

2017

1966-67/1975
Winter et al. 1975
Campbell et al. 1977
Seasonal Dynamics
Point Jefferson last 20 years
Seasonal Dynamics

Point Jefferson: annual cycle in 2016
Seasonal Dynamics

By location

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>JAN</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>FEB</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>MAR</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>APR</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td>11</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>12</td>
<td>16</td>
</tr>
<tr>
<td>MAY</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>13</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>JUN</td>
<td>13</td>
<td>15</td>
<td>10</td>
<td>12</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>JUL</td>
<td>9</td>
<td>13</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>AUG</td>
<td>10</td>
<td>14</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>SEP</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>19</td>
<td>11</td>
</tr>
<tr>
<td>OCT</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>NOV</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DEC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Chlorophyll-a
Chlorophyll-a trends over time

0-3m Depth

Table

<table>
<thead>
<tr>
<th>Site</th>
<th>Years of data</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt. Wells</td>
<td>19</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Pt. Jefferson</td>
<td>24</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>West Point</td>
<td>21</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>South Plant</td>
<td>21</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Elliott Bay</td>
<td>21</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Pt. Williams</td>
<td>24</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>East Passage</td>
<td>15</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Inner QMH</td>
<td>12</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Outer QHM</td>
<td>12</td>
<td></td>
<td>NS</td>
</tr>
</tbody>
</table>

Legend

- **% Change over record**
 - 0-5%: Light blue arrow pointing right
 - 5-25%: Blue arrow pointing right
 - 25-50%: Orange arrow pointing right
 - >50%: Red arrow pointing right

- **NS** = Not Significant (p>0.05)
Chlorophyll-a trends over time

Depth integrated average (1-35m)

<table>
<thead>
<tr>
<th>Site</th>
<th>Years of data</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt. Wells</td>
<td>19</td>
<td>NS</td>
</tr>
<tr>
<td>Pt. Jefferson</td>
<td>24</td>
<td>NS</td>
</tr>
<tr>
<td>West Point</td>
<td>21</td>
<td>NS</td>
</tr>
<tr>
<td>South Plant</td>
<td>21</td>
<td>NS</td>
</tr>
<tr>
<td>Elliott Bay</td>
<td>21</td>
<td>NS</td>
</tr>
<tr>
<td>Pt. Williams</td>
<td>24</td>
<td>NS</td>
</tr>
<tr>
<td>East Passage</td>
<td>15</td>
<td>NS</td>
</tr>
<tr>
<td>inner QMH</td>
<td>12</td>
<td>NS</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>outer QHM</td>
<td>12</td>
<td>NS</td>
<td></td>
<td>NS</td>
</tr>
</tbody>
</table>

Legend: % Change over record
- **NS** = Not Significant (p>0.05)
- 0-5%
- 5-25%
- 25-50%
- >50%

King County
Chlorophyll-a trends over time

June-August combined: 0-3m Depth

<table>
<thead>
<tr>
<th>Site</th>
<th>Years of data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt. Wells</td>
<td>19</td>
</tr>
<tr>
<td>Pt. Jefferson</td>
<td>24</td>
</tr>
<tr>
<td>West Point</td>
<td>21</td>
</tr>
<tr>
<td>South Plant</td>
<td>21</td>
</tr>
<tr>
<td>Elliott Bay</td>
<td>21</td>
</tr>
<tr>
<td>Pt. Williams</td>
<td>24</td>
</tr>
<tr>
<td>East Passage</td>
<td>15</td>
</tr>
<tr>
<td>inner QMH</td>
<td>12</td>
</tr>
<tr>
<td>outer QHM</td>
<td>12</td>
</tr>
</tbody>
</table>

NS = Not Significant (p>0.05)
Chlorophyll-a trends over time

April-September combined: 0-3m Depth

<table>
<thead>
<tr>
<th>Site</th>
<th>Years of data</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
<th>Growing season</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt. Wells</td>
<td>19</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Pt. Jefferson</td>
<td>24</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>West Point</td>
<td>21</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>South Plant</td>
<td>21</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Elliott Bay</td>
<td>21</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>Pt. Williams</td>
<td>24</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>East Passage</td>
<td>15</td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td>inner QMH</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>outer QHM</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

NS = Not Significant (p>0.05)
How Does Central Basin compare?
Historical Data Comparison

ug/L for surface layer

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>April-June</td>
<td>8</td>
<td>15 0.3 - 46</td>
<td>9 0.7 - 40</td>
</tr>
<tr>
<td>May-June</td>
<td>28 - 82</td>
<td>14 0.3 - 38</td>
<td>9 0.7 - 33</td>
</tr>
<tr>
<td>August-September</td>
<td>1.4 - 18</td>
<td>10 0.6 - 58</td>
<td>14 0.5 - 32</td>
</tr>
</tbody>
</table>

Winter et al. 1975
Campbell et al. 1977
Information Gaps

Past

Future

Data

Data

Data

Data

DATA

Cause/effect
Chlorophyll-a Central Basin Summary

- No observed consistent shift in timing of spring bloom; observed variance corresponds to weather/climate anomalies.
- Interannual variability is observed but no large long-term increase.
- Do not see sustained levels throughout growing season (2017 weather anomaly exception) for all but QMH sites.
- Quartermaster Harbor has issues in the fall.
- Statistical analyses indicate no increasing trend in the surface layer in any month, but there was an increase in annual trend at West Point.
- Statistical analyses indicate no increasing trend during the summer months or throughout the entire growing season.

Overall, long-term chlorophyll-a levels in the Central Basin (QMH excluded) do not indicate signs of eutrophication but do show climate effects.
What do we observe in phytoplankton?
Impairment pathways:

- Over-abundance of algae
- Shifts in phytoplankton dominance & size classes
- Increased harmful algal blooms
- Low dissolved oxygen related to blooms
Plankton – drifting organisms

Phytoplankton
plant-like
autotrophic (photosynthetic)

Zooplankton
animal-like
heterotrophic
So...

what is phytoplankton?
No active locomotion - drift
Often in chains, large
Glass case → need silica

Autotrophic

Diatoms

Dinoflagellates

Flagella – swim up and down
Usually single, often small

Autotrophic
Heterotrophic
Mixotrophic

Other

Mostly small flagellates

Autotrophic
Heterotrophic
Mixotrophic
How do we quantify phytoplankton?

Biomass
In food webs, **carbon biomass** is considered a currency of energy transfer.
But ... it’s difficult to measure.

So we use proxys:

Chlorophyll a
Universal photosynthetic pigment, extracted from cells
Most practical but not easily related to cell biomass

Abundance
Count cells or particles
Often the most practical but can be difficult to relate to carbon biomass

Biovolume
Can be related to carbon and biomass
Good proxy
What are the **potential** impacts of nitrogen enrichment on Puget Sound phytoplankton assemblages?

<table>
<thead>
<tr>
<th>Category</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth</td>
<td>Increased biomass production</td>
</tr>
<tr>
<td>Seasonality</td>
<td>Longer growth period, fewer dips, more persistent</td>
</tr>
<tr>
<td>Total biomass</td>
<td>Increased cumulative biomass</td>
</tr>
<tr>
<td>Species richness</td>
<td>May decrease if certain nutrients become limiting (e.g. silica)</td>
</tr>
<tr>
<td>Species composition</td>
<td></td>
</tr>
<tr>
<td>• Cell size</td>
<td>- nutrient-rich environments favor larger cells</td>
</tr>
<tr>
<td>• Diatoms vs. dinoflagellates</td>
<td>- diatoms may be Si-limited (lower Si:DIN)</td>
</tr>
<tr>
<td>• Autotrophic vs. heterotrophic</td>
<td>- heterotrophic dinos may do well if food source is more abundant</td>
</tr>
<tr>
<td>• Increase in HABs (harmful species)</td>
<td></td>
</tr>
</tbody>
</table>
Puget Sound phytoplankton is dominated by diatoms

Seasonal patterns in phytoplankton biomass vary year to year with environmental conditions

Inter-annual variability in bloom timing, magnitude and species composition make it difficult to assess trends

10-yr record of central basin taxa shows a large group of common taxa present every year, but some changes in 2017
How does seasonal phytoplankton growth relate to nitrogen levels in the water?

Point Jefferson - surface

2016

Biovolume (mm³/L) vs. DIN (mg/L) for 2016

2017

Biovolume (mm³/L) vs. DIN (mg/L) for 2017

King County
Phytoplankton Seasonal Succession: Is there a universal seasonal pattern?

East China Sea
Example of classical succession pattern

But Puget Sound is different:
There are abundant nutrients that favor large-celled diatoms year round, as long as silica is present (it is seldom limiting).

Puget Sound central basin: Seasonality of major taxonomic groups

Biovolume means of 6 offshore stations (imaging technology)
- Year to year variations in seasonal pattern
- Diatoms always dominate – typical of many estuarine areas
Similar pattern to what we observe

Historical data for South Central Basin

Anderson et al. 1984
Puget Sound central basin:
Seasonality of 6 top taxa for last 3 years

- Biovolume means of 8 offshore stations
 - Characteristic seasonal succession (mostly chain-forming diatoms)
 - *Thalassiosira* spp. → Other Diatoms → *Chaetoceros* spp
 - Year to year variations are likely the norm
 - Some taxa are abundant every year, others unpredictable
• Consistent spatial pattern in total biomass – the central basin is not homogenous

• Central Basin annual totals are similar year to year – no indication of changes in phytoplankton biomass (but short time series)
Has phytoplankton species composition changed in the last 10 years?

- 2008 – 2017 microscopic observations in central basin
- Presence / Absence at Pt Jefferson and/or East Passage
Number of taxa identified 2008-2017

Common Taxa (65)

Most were present every year → no change

Less common Taxa (33)

Present 1-7 of 10 years → no trend

General decline in # of taxa 2017
Some “new” common taxa in 2017
Previously very uncommon or absent from our records

DIATOMS
- Guinardia striata
- Asterionella formosa
- Bacteriastrum delicatulum

DINOFLAGELLATES
- Ceratium lineatum
- Prorocentrum micans
20 most variable taxa 2014-2017
(imaging technology)

Mean Annual Biovolume (mm3 L$^{-1}$)

<table>
<thead>
<tr>
<th>Taxa</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteriastum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cocchlodinium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asterionellopsis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karlodinium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protoceratium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tropidoneis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phaeocystis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coscinodiscus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerataulina</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polykrikos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eucampia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterosigma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lauderia/Detonula</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amylax</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akashiwoxypsis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prorocentrum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odontella</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizosolenia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noctiluca</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 4 HABs

10 Diatoms: 59%
8 Dinoflagellates: 30%
2 Other Phyto: 20%
Noctiluca
microscope counts
means of 10 stations

Cells L⁻¹

2014 2015 2016 2017 2018

King County
Noctiluca blooms

Three Tree Point

May 1975

June 1975

June 2018

Photo C. Krembs, Ecology
Phytoplankton Summary

- Puget Sound phytoplankton is dominated by diatoms, as is typical of nutrient-rich estuarine areas.
- Phytoplankton draw down most of the ambient nitrogen during the peak growth season.
- Seasonal patterns in phytoplankton biomass can vary year to year with environmental conditions (e.g. stratification).
- Inter-annual differences in bloom timing, magnitude and species composition make it difficult to assess trends (need longer time series!)
- 10-yr record of central basin taxa shows a large group of common taxa present every year, but some changes in 2017.
- Noctiluca observations go back a long time, but there is no long-term data record.
Impairment pathways:
• Over-abundance of algae
• Shifts in phytoplankton dominance & size classes
• Increased harmful algal blooms
• **Low dissolved oxygen related to blooms**
Low dissolved oxygen oceanic water can funnel into Juan de Fuca Strait and intrude in Puget Sound (Source: Alford & MacCready 2014)

Downwelling in winter reduces availability of lower DO over the Admiralty Sill while upwelling in summer increases availability of this lower DO bottom water. (Source: Deppe et. al 2018)
Dissolved Oxygen (DO) – Key Points

• Different processes dominate variability in DO in different areas
 • Low DO oceanic intrusions in the straits
 • Biological production/respiration in Quartermaster Harbor
 • Combination in Central Basin
• Consider DO levels with climate forcing and climate change
• No clear trends or changes in DO
 → Needs further exploration in other areas of Puget Sound
Dissolved oxygen varies seasonally with salinity.

2017 East Passage - Dissolved Oxygen (mg/L)

- 5 mg/L
- 30.5 PSU

2017 East Passage - Salinity (PSU)

- 30.5 PSU
Minimum monthly dissolved oxygen: 2006 - 2017

- Central Basin

- Biological stress for some spp.

- Hypoxia

Month
Biological stress for some spp.

Minimum monthly dissolved oxygen: 2006 - 2017

Minimum DO (mg/L)

4

3

2

1

0

1 2 3 4 5 6 7 8 9 10 11 12

Month

Biological stress for some spp.

Quartermaster Harbor

Hypoxia
Biological stress for some spp.

Minimum monthly dissolved oxygen: 2006 - 2017

Minimum DO (mg/L)

0 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10 11 12

Month

Strait of Juan de Fuca

Puget Sound

Hypoxia

Biological stress for some spp.
Inner Quartermaster Harbor – mooring at 1-m

Dissolved oxygen (mg/L)

King County
Zooming in to 3 days – huge daily swings in DO
How have dissolved oxygen levels changed over time?
Dissolved Oxygen Trends

<table>
<thead>
<tr>
<th>Site</th>
<th>Years</th>
<th>Deep Target Depth</th>
<th>Deep 80-100-m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brightwater TP</td>
<td>19</td>
<td>180-m</td>
<td>NS</td>
</tr>
<tr>
<td>Pt. Jefferson</td>
<td>24</td>
<td>200-m</td>
<td>NS</td>
</tr>
<tr>
<td>Pt. Williams</td>
<td>24</td>
<td>180-m</td>
<td></td>
</tr>
<tr>
<td>West Point TP</td>
<td>21</td>
<td>55-m</td>
<td>NS</td>
</tr>
<tr>
<td>South TP</td>
<td>21</td>
<td>180-m</td>
<td>NS</td>
</tr>
<tr>
<td>Elliott Bay</td>
<td>21</td>
<td>75-m</td>
<td>NS</td>
</tr>
<tr>
<td>East Passage</td>
<td>15</td>
<td>180-m</td>
<td>NS</td>
</tr>
</tbody>
</table>

Legend: %Change over record
NS = Not Significant (p>0.05)
Strait of Juan de Fuca

<table>
<thead>
<tr>
<th></th>
<th>Years</th>
<th>Months</th>
<th>Deep Target Depth</th>
<th>Deep</th>
<th>80-100-m</th>
</tr>
</thead>
<tbody>
<tr>
<td>North</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SJF000</td>
<td>19</td>
<td>All</td>
<td>140-m</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>SJF001</td>
<td>19</td>
<td>All</td>
<td>140-m</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>SJF002</td>
<td>19</td>
<td>All</td>
<td>140-m</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

South

Quartermaster Harbor

- Short-term variability too high to accurately assess trends
- From 15-min mooring data: inter-annual variability but no indication of increase in duration or intensity of low DO events (caveat: short data record).
How does this compare to historical data collected from 1933 – 1975?

Salinity at 200-m – Similar pattern

Temperature at 200-m – Increase of ~ 0.5 – 1 °C

△ UW/Collias 1933 - 1975 ○ King County 2002 - 2017

Error bars are 95% CI of the mean

Dissolved oxygen at 200-m – Similar seasonal pattern, variable by month

Δ UW/Collias 1933 - 1975 ○ King County 1998 - 2017

Error bars are 95% CI of the mean
No clear shift in DO observed during late summer/fall Aug. – Nov. DO time series for Point Jefferson at 200-m
Overall Summary

- Large amounts of spatial and temporal variability
- Important to understand drivers of nutrient changes and evaluate potential impairment indicators beyond concentrations
- Chlorophyll-a observations do not indicate signs of eutrophication in Central Basin. Due to lack of historical data, Quartermaster Harbor story isn’t clear.
- No clear trends or changes in DO.
- Inter-annual differences in phytoplankton bloom timing, magnitude and species composition make it difficult to assess trends (need longer time series)
- Hydrological cycle and circulation are important for assessing trends
- Need to understand variability within and between basins → Could lead to different approaches and priorities for science and management.
Thank you!

Contributors:

- King County Environmental Lab staff for field sampling and lab analysis
- Bruce Nairn: Dissolved oxygen explorations
- Lyndsey Swanson: Phytoplankton analyses