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INTRODUCTION 
 
Project Fundamentals 
 
A preceding technical memorandum titled Development of Flow and Water Quality Indicators 
and dated April 12, 2011 laid out a conceptual framework for the WRIA 9 stormwater retrofit 
planning project (―the project‖) linking watershed land use and land cover (LU/LC), aquatic 
ecosystem habitats, aquatic biota, stormwater management practices, and climate change.  
That memorandum further introduced and defined the term ―metrics‖, that is quantities that can 
potentially be measured to quantify the many variables operating in these components and 
contribute to understanding relationships existing within the system.  It reasoned that, faced with 
innumerable variables and the impossibility of measuring many of them, a manageable and 
valid course of action is to identify those variables that can best represent a component and its 
relationships to other components.  The memorandum termed these key variables ―indicators‖.  
The main test for acceptance as an indicator is a demonstrated ability to link events in one 
system component to responses in another.  The specific indicators and the demonstration of 
their capabilities for this purpose came from research performed in the Puget Sound region 
documenting linkages between stream hydrology and water quality metrics and watershed 
conditions on the one hand and aquatic biological community integrity on the other.  The 
research further provides the basis to set numerical ―targets‖ for these habitat indicators to 
achieve specific biological goals, attained through appropriate stormwater management 
strategies.  This technical memorandum covers that subject. 
 
The earlier memorandum illustrated how the project will apply the indicators and targets to 
achieve its purposes, repeated here as Figure 1.  Indicator values will be predicted by the 
System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN) model, after 
LU/LC, climate change, hydrologic, and tentative stormwater management best management 
practice (BMP) inputs.  These values will be compared to the targets as determinants of the 
management scenario’s ability to meet set aquatic ecosystem protection or restoration goals.  
Not meeting targets will trigger reiteration with altered management actions until a management 
plan does achieve the goals.  Of course, the resulting plan may or may not be feasibly 
implementable in reality, which could condition goal revision and further assessment. 
 
Tentatively Selected Indicators 

 
Earlier work in the project, documented in the April memorandum, evaluated 20 candidate 
hydrologic indicators with respect to seven specific selection criteria, key ones being the 
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strength of their linkages to LU/LC characteristics and aquatic biological integrity.  Two 
candidates stood out over all others in meeting the overall criteria: 
 

 High pulse count (HPC)—number of days in each water year that discrete high flow 
pulses occur, with twice the mean flow rate taken as the threshold to identify a high 
pulse; and 

 

 High pulse range (HPR)—range in days between the start of the first high-flow pulse and 
the end of the last high flow pulse during a water year. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Project Modeling Framework 
 
Available data showed these indicators to be highly correlated with both total impervious area 
(TIA), an important expression of LU/LC, and benthic index of biotic integrity (B-IBI), the most 
commonly used aquatic biological metric in the region.  They also can be established reliably by 
stream gauge data and calculated by the HSPF model in relatively good agreement with gauge 
data and are relatively independent of potentially confounding variables (basin area, channel 
slope, soil type, elevation, precipitation). 
 
Two additional hydrologic indicators demonstrated compliance with the selection criteria, with 
the exception of not having a demonstrated close correspondence in computation results from 
both gauged and modeled data.  However, they were judged to offer the potential to add 
information not afforded by high pulse count and range.  These indicators are: 
 

 Time above 2-year mean flow (TQ > 2-y Qmean)—fraction of the time in each water year that 
the daily time-step hydrograph exceeds the 2-year mean flow rate for a forested 
condition; and 

 

 2-year peak:mean winter base flow ratio (PEAK:BASE)—ratio of peak flow rate with a 2-
year return frequency to the mean base flow rate during the period October 1-April 30. 

 
The original project scope designated total suspended solids (TSS) as the principal water 
quality indicator.  However, TSS is not the subject of Washington Department of Ecology 
(WDOE) water quality criteria.  Also, the association between TSS and biological integrity has 
not been established.  Unlike with the selected hydrologic indicators, therefore, a basis does not 
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exist to set TSS targets to meet specific goals for the protection or restoration of aquatic life.  
Water quality criteria are predicated on another sediment measure, turbidity, as well as 
dissolved metals, for all of which a substantial WRIA 9 data set exists.  Those data required 
analysis before final selection of water quality indicators over and above TSS, a task that was 
performed during the latest phase of work and is reported upon in this memorandum. 
 
As recounted in the April memorandum, the analysis involved, first, examining if a statistically 
justified relationship between TSS and turbidity allows setting turbidity targets on the basis of 
water quality criteria; if so, translating the targets to TSS terms based on the relationship; and 
using those terms to gauge the effectiveness of stormwater management scenarios.  Second, 
the analysis assessed if sufficiently strong relationships link TSS, total recoverable metals, and 
dissolved metals, to support quantitative, or at least qualitative, judgments regarding the 
probability of meeting metals water quality criteria as a function of success in controlling TSS.   
 
APPLICATION OF TARGETS FOR GOAL ASSESSMENT 
 
The ―Range-of-Outcomes‖ Approach 
 
The target-setting phase of work was initiated with a general consideration of how targets can 
best be applied in the project’s framework, as illustrated in Figure 1, to yield the broadest range 
of information with the greatest convenience.   It was decided to frame the exercise in a ―range-
of-outcomes‖ mode; i.e., instead of settling on a few specific targets, mechanisms would be 
developed to investigate a spectrum of possibilities.  This decision took inspiration from Reeves 
and Duncan (2009), who recognized the dynamic, non-equilibrium nature of aquatic ecosystems 
and the historical variation of watershed conditions over time.   They argued against using 
averages or any other single values as the basis for management actions in the face of variation 
in habitat conditions over time and the time dimension of succession to some ultimate state, 
itself subject to further change.  They expressed the belief that, in the often highly modified state 
of aquatic ecosystems, static reproductions of past conditions are impossible on any broad 
scale. 
 
In the context of this project, the range-of-outcomes philosophy will be applied by selecting 
quantitative protection or restoration goals for which to evaluate BMP strategies with SUSTAIN.  
With modeling, the goals to be investigated are limited only by the demands of time to input data 
and the required run time.  Hence, the range of outcomes to be investigated could extend all the 
way from maintaining an existing state, to some fractional improvement (e.g., a 10 or a 50 
percent increase in an ecological metric), to returning the metric to equivalence with a pre-
European-settlement, fully forested condition.  The main subject of this memorandum is a report 
on the work performed to develop relationships linking prospective goals with hydrologic and 
water quality targets that must be met to achieve those goals.  For any goal of interest, then, 
SUSTAIN, with post-processing of its output in some cases, will tell if the targets essential to 
achieving goals can be met and the costs of doing so.  With this information, further refinement 
will then whittle goals to those most expeditious and feasible for the WRIA 9 retrofit plan. 
 
The Nature of Goals 
 
The goals to be investigated in this project will be fundamentally rooted in biological outcomes.  
Substantial past research, summarized in the April memorandum, quantitatively linked the 
tentatively selected hydrologic indicators with biological metrics, principally B-IBI.  Goals will be 
expressed as B-IBI targets, and the quantitative relationships will then translate these numbers 
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to targets set for the selected hydrologic indicators, to be subjected to analysis by SUSTAIN 
and, as necessary, post-processing data work. 
 
WDOE water quality criteria (173-201A WAC), also grounded in the requirements and tolerance 
limits of aquatic biota, will be the basis for water quality targets.  Essentially, the goals will be 
meeting those criteria for the selected indicators according to all WDOE stipulations, including 
anti-degradation requirements. 
 
Treatment of Uncertainty 
 
Uncertainty is a constant fact of life in environmental explorations and should, in any case 
possible, be expressed as part of forecasts.  Fortunately, sufficient data are available in both the 
hydrologic and water quality realms to perform the statistical analyses necessary to quantify 
uncertainty for this project.  Therefore, all goal assessments will be framed in terms of the best 
estimate of the hydrologic or water quality target needed to achieve the goal and the probability 
or confidence interval associated with that estimate. 
 
HYDROLOGIC TARGETS 
 
Results of Literature and Data Review 
 
The first task in hydrologic target setting involved reviewing the available literature and data 
relating the selected hydrologic indicators with biological indicators.  Second was an evaluation 
of the adequacy of already completed statistical analyses to establish hydrologic targets for a 
range of biological outcomes (mainly working with B-IBI) with known levels of certainty.  Where 
these results were not fully adequate and additional data existed to improve target setting, the 
work turned to further statistical analyses. 
 
The indicator time above 2-year mean flow had to be eliminated because of unreliability 
discovered in the available data.  This problem subverted the objective of supplementing HPC 
and HPR with additional indicators expected to supply different information.  While the 2-year 
peak flow:mean winter base flow indicator still remained for that purpose, a search ensued for a 
replacement for the lost indicator. 
 
Disturbance frequency of spawning gravels, i.e. frequency of flows capable of mobilizing 
spawning gravel as an average number of events per year, was identified as a possible 
replacement, with a target of < 3/year based on limited data (Doyle et al. 2000, Hartley personal 
communication).  However, applying the indicator is complicated by the existence of several 
important variables, in addition to hydrologic measures, affecting its value (e.g., substrata 
composition, large woody debris).  Its use is further complicated by obtaining suitable model 
output for quantification.  It appears that using the indicator would require extensive 
assumptions and post-processing after SUSTAIN runs. This indicator will be held in reserve with 
a decision on its use delayed until results with the three remaining indicators are available and 
the ability of the project to support the greater post-processing burden can be evaluated. 
 
High Pulse Count and High Pulse Range Targets 
 
Data Available for Target Setting 
 
Two data sets are available for potential use in target setting.  One set compiled by DeGasperi 
et al. (2009) has data from 16 stream stations with at least one full water year (October-
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September) and calendar year of continuously recorded flow data coincident with the year in 
which benthic organisms were sampled and B-IBI determined.  The second data set is 
considerably larger, with 46 stations.  However, the timing of flow gauging and benthic sampling 
varied substantially among these sites; and they were more heterogeneous in characteristics 
like watershed size, channel slope, geology, and soils.  The resulting data exhibited much more 
variability than the data of DeGasperi et al. (2009), and statistical analyses produced less 
satisfactory relationships for target-setting purposes than those derived from the more 
homogeneous locations.  Accordingly, the second data set was discarded and the exercise 
proceeded with the first one. 
 
Basic Analyses 
 
Figures 2 and 3 depict B-IBI in relation to HPC and HPR, respectively, from the DeGasperi et al. 
(2009) data.  There is a clear trend toward biological decline with increase of both hydrologic 
indicators.  However, there is a dearth of relatively high B-IBI values, and a lack of any values 
between 16 and 24, deficiencies in the data set that impede target setting.  It could be said that 
the highest B-IBI can only be achieved with HPC < 5 and HPR < 100, but that judgment is 
based on only one data point.  Also, those hydrologic conditions clearly do not guarantee such a 
favorable biological outcome, since one point with low HPC and HPR falls much lower in B-IBI.  
This pattern mirrors that seen in data from earlier research, summarized in the April 
memorandum, in which specific environmental conditions were found to be necessary but not 
sufficient to produce a particular relatively high level of biological integrity.  On the other hand, it 
can be seen in the graphs that B-IBI never rose above 16 if HPC exceeded 15 and HPR was 
above 200.  This pattern was also evident in the earlier data, where it was found that certain 
specific environmental conditions appear to guarantee inevitably low biological integrity. 
 

  
Figure 2.  Benthic Index of Biotic Integrity in Relation to High Pulse Count 
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Figure 3.  Benthic Index of Biotic Integrity in Relation to High Pulse Range 
 
Taking this analysis farther, Table 1 gives the necessary conditions for several B-IBI levels, 
along with means and ranges of the hydrologic indicators associated with those levels.  These 
numbers give direction for target setting but are still not sufficient to guarantee higher B-IBI 
levels (≥ 24).  The table shows that mean HPC and HPR values are very close for the first two 
B-IBI categories and the ranges largely overlap.  Overlap is less but continues through the next 
two categories.  This lack of separation in the data complicates target setting and requires 
formal consideration of the relative certainty of any outcome, the purpose of statistical analyses 
reported below.  One point that can be made with substantial confidence is that a goal of raising 
B-IBI out of the lowest tier (to > 16) cannot be achieved if HPC remains above 15 and HPR over 
200.   
 
Table 1.  Limiting Values and Means and Ranges of High Pulse Count and High Pulse Range 
(Days) Associated with Certain Ranges of Benthic Index of Biotic Integrity 

B-IBI 
Limiting Value Mean

a
 Range 

Number of Data Points 
HPC HPR HPC HPR HPC HPR 

>35 ≤7 ≤110 5.0 100 3.0-7.0 90-110 2 

30-35 ≤9 ≤168 5.5 107 2.0-8.7 34-168 4 

24-29 ≤11 ≤178 9.1 153 7.3-10.7 115-178 4 

≤16 >15 >200 15.9 241 10.0-22.0 160-306 6 
a Medians are very similar to means. 
 
Statistical Analyses 
 
The data of DeGasperi et al. (2009) plotted in Figures 2 and 3, even with the gaps noted above, 
yielded relatively strong statistical relationships that can be used to aid in setting HPC and HPR 
targets based on selected B-IBI objectives.  Importantly also, the statistical analyses allow 
expressing uncertainty and the confidence that can be attached to target assignments.  Table 2 
presents the regression equations best explaining variance in the dependent variable, which are 
logarithmic, and confidence limits for the model parameters.  The percent of maximum B-IBI 
score was used in deriving the equations to allow comparison of results obtained using these 
two indicators with those from the 2-year peak:mean winter base flow ratio indicator.  The data 
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set for the latter indicator is based on an earlier B-IBI formulation with a maximum score of 45, 
whereas 50 is the maximum in the HPC and HPR database. 

 

Table 2.  Regression Equations and Associated Statistics Relating High Pulse Count and High 
Pulse Range with Benthic Index of Biotic Integrity Based on Data Compiled by DeGasperi et al. 
(2009) 

Statistic High Pulse Count (HPC) High Pulse Range (HPR) 

Equation 
Ln (% Max. B-IBI Score) 
= - 0.066*HPC + 4.50

a
 

Ln (% Max. B-IBI Score) 
= - 0.005*HPR + 4.69

a
 

R
2*

 0.745 0.755 

Confidence limits 
(lower, upper) 

90% 
Coefficient (-)0.084, (-)0.048 (-)0.007, (-)0.004 

Constant 4.29, 4.71 4.44, 4.95 

80% 
Coefficient (-)0.080, (-)0.052 (-)0.006, (-)0.004 

Constant 4.34, 4.66 4.50, 4.89 

60% 
Coefficient (-)0.075, (-)0.057 (-)0.006, (-)0.004 

Constant 4.39, 4.60 4.57, 4.82 
a
 Ln signifies the natural logarithm. 

*
 R

2
 represents the fraction of variability in a data set explained by the statistical model.  Both regressions 

are significant at P < 0.001. 

 
Examples 
 
Table 3 gives best estimates of B-IBI values resulting over ranges of HPC and HPR, as 
computed from the regression equations.  The table also presents the lowest B-IBI expected at 
three confidence levels for each estimate.  Color fonts indicate values discussed in the 
illustration. 
 
For illustration, the best estimates for HPC and HPR targets to increase B-IBI from a lower level 
to approximately 50 percent of the maximum value (25) are HPC < 5-10 and HPR < 150.  
However, if one took a somewhat cautious stance and demanded 80 percent confidence of 
meeting the goal with the least optimistic forecast (low B-IBI estimate), HPC and HPR 
would have to be held to no more than 5 and 100, respectively.  As another illustration, 
suppose that the goal is to keep B-IBI above the lowest tier in Table 1 (i.e., > 16, equivalent 
to > 32 percent of the maximum).  The best estimates of hydrologic targets to reach that goal 
are HPC = 15 and HPR = 200 or slightly less, similar to the conclusion from the less formal 
analysis presented above.  However, those targets would not give strong confidence of meeting 
the goal, and values around 10 and somewhat under 200, respectively, would be needed 
even for 60 percent confidence of fairly certain achievement. 
 
It is evident in the table that meeting the highest biological goals (e.g., B-IBI > 75 percent of 
maximum) can be anticipated only with the very lowest levels of HPC and HPR.  Even then, 
there would not even be 60 percent confidence that these goals would actually be achieved in 
the least optimistic prediction. 
 
Ultimate goal and target setting hence must contend with the uncertainty inherent in the 
underlying data and the expressions derived from them.  The range of possible outcomes can 
be assessed by applying the regression equations for best estimates and worst-case 
assumptions, and also with different confidence levels, to make the most judicious choices.  
Then, modeling can determine the stormwater management strategies needed to achieve 
potential goals and their associated targets.  This is the recommended strategy for this project.



8 

 

Table 3.  B-IBI Best Estimates and Lower Confidence Bounds Determined from Regression 
Equations for Ranges of High Pulse Count and High Pulse Range 

Indicator Target B-IBI Best Estimate (% of Max.) Confidence Level (%) 
Low B-IBI Estimate 

(% of Max.) 

HPC 

2 78.9 

90 

61.7 

5 64.7 47.9 

10 46.5 31.5 

15 33.4 20.7 

20 24.0 13.6 

2 78.9 

80 

65.4 

5 64.7 51.4 

10 46.5 34.5 

15 33.4 23.1 

20 24.0 15.5 

2 78.9 

60 

69.4 

5 64.7 55.4 

10 46.5 38.1 

15 33.4 26.2 

20 24.0 18.0 

HPR 

50 84.8 

90 

59.7 

100 66.0 42.1 

150 51.4 29.7 

200 40.0 20.9 

250 31.2 14.7 

300 24.3 10.4 

50 84.8 

80 

66.7 

100 66.0 49.4 

150 51.4 36.6 

200 40.0 27.1 

250 31.2 20.1 

300 24.3 14.9 

50 84.8 

60 

71.5 

100 66.0 53.0 

150 51.4 39.3 

200 40.0 29.1 

250 31.2 21.5 

300 24.3 16.0 

 
2-Year Peak:Mean Winter Base Flow Ratio Targets 
 
Data Available for Target Setting 
 
Cooper (1996) produced a data set incorporating B-IBI and the 2-year peak:mean winter base 
flow ratio (PEAK:BASE) indicator at 56 stations on 20 Puget Sound lowland streams.  The data 
set also includes determinations of young-of-the-year coho salmon:cutthroat trout ratios at 11 
stations.  The anadromous coho are more sensitive to urban stream stresses and tend to be 
more prevalent than the resident cutthroat only at low levels of those stresses.  The hydrologic 
variables were computed from model outputs, primarily derived from the King County Runoff 
Time Series (KCRTS) model.  The Hydrologic Simulation Program – FORTRAN model was 
employed on four streams and, on four others, a stepwise multiple linear regression equation 
(after Cummans, Collings, and Nassar 1975) giving flow rate as a function of basin area and 
percent glacial till soil.  B-IBI data were from Kleindl (1995), computed on a 45 point scale pre-
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dating the 50 base used in later years.  The fish data were from a variety of previous studies 
compiled by May (1996). 
 
PEAK:BASE values were computed for the stream stations in the DeGasperi et al. (2009) data 
set, with the thought that it would be ideal to use the same data for all hydrologic target setting, 
as well as keep B-IBI on the same 50 scale for all determinations.  However, those data 
exhibited more scatter than the larger Cooper database.  Data from the two sources could not 
be combined because of the differing B-IBI bases.  Accordingly, the exercise proceeded with the 
Cooper data. 
 
Basic Analyses—Benthic Data 
 
Figure 4 plots B-IBI in relation to PEAK:BASE from the Cooper (1996) data.  As in Figures 2 and 
3, there is a clear trend toward biological decline with increase of the hydrologic indicator.  While 
this larger data set has a more continuous distribution of B-IBI values than the data used for 
HPC and HPR target setting and extends to closer to the maximum score, it also exhibits more 
scatter.  It can readily be seen that the highest B-IBIs can only be achieved with PEAK:BASE < 
10, but that condition again far from guarantees such a favorable biological outcome.  It is thus 
another necessary but not sufficient requirement.  On the other hand, it can be seen in the 
graph that B-IBI never rose above 19 if PEAK:BASE exceeded about 35, a point that  appears 
to guarantee inevitably low biological integrity. 
 

 
Figure 4.  Benthic Index of Biotic Integrity in Relation to 2-Year Peak:Mean Winter Base Flow 
Ratio 
 
Taking this analysis farther, Table 4 gives the necessary conditions for several B-IBI levels, 
along with means and ranges of the hydrologic indicator associated with those levels.  Like in 
Table 1, PEAK:BASE range overlap is prevalent and the mean values are very close for the 
second and third B-IBI categories, and are in fact reversed in order from the expected.  Once 
again, these circumstances in the data complicate target setting and require statistical analyses, 
reported below.  One point that can be made with substantial confidence is that a goal of raising 
B-IBI out of the lowest tier (to > 19) cannot be achieved if PEAK:BASE remains above 35.   
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Table 4.  Limiting Values and Means and Ranges of 2-Year Peak:Mean Winter Base Flow Ratio 
Associated with Certain Ranges of Benthic Index of Biotic Integrity 

Group 
B-IBI 2-Year Peak:Mean Winter Base Flow Ratio Number of 

Data Points Score % of Max. Limiting Value Mean
b
 Range 

1 >35 >78 ≤11a
 12.5 6.7-28.3 5 

2 26-35 57-78 ≤30 14.9 6.7-28.8 25 

3 19-25 42-56 ≤33
a
 18.6 3.5-45.0 16 

4 <19 <42 >35
a
 26.0 13.0-40.0 10 

a One outlying data point was omitted in assigning this value. 
b Median is approximately 4.0 less, except for Group 2 in which the median is 1.3 less. 
 
Statistical Analyses—Benthic Data 
 
Mirroring the scatter evident in Figure 4, regressing B-IBI and the PEAK:BASE indicator did not 
yield a strong relationship (best R2 = 0.23 for a power function).  Consequently, this indicator 
and its targets are considered to be secondary to HPC and HPR but still potentially useful as an 
independent confirmation of conclusions reached on the basis of the primary indicators. 
 
To improve target setting ability for PEAK:BASE, the data were examined using logistic 
regression analysis, which predicts the probability of the dependent variable’s falling in a given 
range with different values of the independent variable.  The analysis was performed with SPSS 
Statistics 19 for MS Windows.  
 
Logistic regression analysis develops an equation for the logit function, L, in the form L = bo + 
b1x, where in this case x = PEAK:BASE or log-transformed PEAK:BASE.  L is the natural 
logarithm of the odds of a result being within or outside of a group.  In the present context, the 
group is a B-IBI above a certain score versus below that value.  The probability, P, of being in 
the group is P = eL/(1 + eL), where e is the base of the natural logarithm system (≈ 2.718).  To 
introduce uncertainty to the analysis, confidence limits on b1 can be determined from the 
standard error (SE) of the estimate of b1; e.g., 95 percent upper and lower confidence limits = b1 
± 1.96*SE (Everitt and Dunn 2001, Sorensen 2006). 
 
The quality of the outcome of logistic regression analysis can be assessed in a number of ways, 
all of which were applied in this project.  They include (Kinnear and Gray 2000):  (1) ability to 
predict group membership versus exclusion from membership, (2) Cox and Snell R2, (3) 
Nagelkerke R2, (4) Hosmer and Lemeshow significance test, and (5) Wald significance test. 
 
Logistic regression models were generated for the following B-IBI groups (defined in Table 4):  
(1) Group 4 versus Groups 1-3, (2) Groups 3-4 versus Groups 1-2, (3) Groups 2-4 versus Group 
1, (4) Group 4 versus Group 3, (5) Group 3 versus Group 2, and (6) Group 2 versus Group 1.  
Each analysis was performed with PEAK:BASE log-transformed and untransformed, for a total 
of 12 analyses. 
 
Only two of these analyses yielded models capable of predicting both group membership and 
non-membership correctly more than half of the time.  One of these models rated relatively 
poorly with respect to the other judgment criteria though.  The remaining model was 73 percent 
correct in predicting membership in Groups 1 or 2 (B-IBI > 56 percent of the maximum) and 62 
percent accurate in forecasting non-membership (i.e., falling in Groups 3 or 4).  This model is: 
 

L = 1.87 – 0.098*(PEAK:BASE). 
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A third model was very effective (98 percent) at forecasting membership in Groups 1-3 (B-IBI ≥ 
42 percent of maximum).  Although less able to predict non-membership (30 percent), the 
model ranked the highest or among the highest in all other respects.  This model is: 
 

L = 9.40 – 6.17*Log(PEAK:BASE).   
 
Based on all of the quality criteria, these two models clearly rated above the rest and were 
adopted for use in project target setting.  The most poorly performing models from the 
standpoints of predictive ability and statistical criteria were those delineating B-IBI in adjacent 
groups (e.g., Group 2 versus 1 or 4 versus 3).  The available data are too dispersed for that 
level of differentiation. 
 
Examples 
 
Table 5 shows the probabilities estimated from the logistic regression models of achieving two 
levels of B-IBI increase for a range of PEAK:BASE ratio, along with the lowest expected 
probabilities at several confidence levels.  Again, color fonts point out numbers discussed in the 
illustration below. 
 
Table 5.  Best and Lowest Probability Estimates for Achieving Two Levels of B-IBI Increase with 
a Range of 2-Year Peak:Mean Winter Base Flow Target Values Based on Logistic Regression 
Analysis 

2-Year Peak:Mean Winter 
Base Flow Target 

B-IBI Increase 
Estimated Probability of 

B-IBI Increase 

Lowest Probability 
Estimate of B-IBI Increase 

95
a
 90

a
 80

a
 60

a
 

5 

From Group 4 to 
Groups 1-3 

0.99 0.88 0.92 0.95 0.98 

10 0.96 0.23 0.38 0.58 0.79 

20 0.80 0.01 0.03 0.08 0.25 

30 0.57 0.00 0.01 0.02 0.07 

40 0.38 0.00 0.00 0.01 0.03 

45 0.31 0.00 0.00 0.00 0.02 

5 

From Groups 3-4 
to Groups 1-2 

0.80 0.73 0.74 0.76 0.77 

10 0.71 0.54 0.56 0.60 0.64 

20 0.48 0.17 0.21 0.26 0.32 

30 0.25 0.04 0.05 0.07 0.12 

40 0.11 0.01 0.01 0.02 0.03 

45 0.07 0.00 0.00 0.01 0.02 
a
 Percent confidence.  Logistic regression probabilities are normally based on 95 percent confidence, but 

results for other levels are given for illustration. 

 
As an illustration, the best estimate of a PEAK:BASE target to reach 0.80 probability of 
increasing B-IBI from Group 4 to Groups 1-3 is PEAK:BASE = 20.  However, the probability 
could be as low as 0.25 even with 60 percent confidence and would require a target of 
PEAK:BASE = 10 to have that level of confidence in reaching probability of about 0.80.  
This is a very low ratio only observed in the least urban cases.  However, there is expected to 
be a better than even chance (0.57 probability) of achieving the goal with PEAK:BASE = 
30.  Raising B-IBI further, to Groups 1 or 2, is more challenging yet, being at least 
somewhat likely (>0.50 probability) only if PEAK:BASE is around 10 or lower. 
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Fish Data Analyses 
 
Similar linear and logistic regression analyses were performed for the ratio of young-of-the-year 
coho salmon to cutthroat trout biological indicator.  While significant relationships with relatively 
good statistics resulted, confidence bands were very wide, a consequence of the small data set 
for this indicator, as well as the data’s variability.  For example, while the best estimate of the 
probability to reach the highest values for the indicator is 66 percent with PEAK:BASE ≤ 10, 
even the 60 percent confidence band extends from 0 to 99 percent.  Therefore, these analyses 
are not capable of adding reliable information to that gained from analyses of B-IBI and the 
three hydrologic indicators.  Still, as portrayed in Figure 5, PEAK:BASE < 18 is necessary but 
not sufficient for coho numbers to exceed cutthroat, and increase above that level appears to 
drive the community to strong cutthroat dominance. 
 

 
Figure 5.  Young-of-the-Year Coho Salmon:Cutthroat Trout Ratio in Relation to 2-Year 
Peak:Mean Winter Base Flow Ratio 
 
Using Hydrologic Indicators and Targets in Concert 
 
The target-setting examples presented for the three selected hydrologic indicators show that the 
project must operate in an environment in which achieving any particular biological goal will 
have a fairly high degree of uncertainty.  It is unlikely that application of the three indicators will 
yield a similar outcome with approximately equivalent confidence.  However, the availability of 
multiple bases for judgment somewhat mitigates that disadvantage.  While HPC and HPR are 
closely correlated, PEAK:BASE does offer a somewhat less closely associated indication.  
Ultimate strategies will have to be decided upon in relation to the weight of the evidence offered 
by the three best estimates of outcome and the associated uncertainty. 
 
WATER QUALITY TARGETS 
 
Investigating Targets 
 
A previous King County project in the Green River watershed produced a large database 
containing TSS, turbidity, three metals (copper, lead and zinc, all in both total recoverable and 
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dissolved forms), and phosphorus (total and orthophosphate), as well as flow rate.  The 
database has over 1000 measurements for TSS and turbidity and almost 900 for the other 
contaminants.  These large numbers offered potential ability to develop statistical relationships 
between TSS and other measures with strong confidence levels.  The work proceeded, 
according to the following outline, to investigate relationships between TSS and each of the 
other water quality variables and between dissolved metals and both total recoverable metals 
and flow rate. 
 
For Solids 
 
Determine if a statistically justified relationship (or a set of relationships for different portions of 
the watershed) exists to relate TSS and turbidity. 
 

 If so, set turbidity targets on the basis of WDOE water quality criteria, translate to TSS 
based on the relationship(s), and use with SUSTAIN to gauge the effectiveness of 
stormwater management scenarios. 

 

 If not, set TSS targets at values ranging from not surpassing a high concentration 
associated with a developed condition to selected reduction levels down to as low as the 
concentration associated with forested land cover.  While these selections would not 
have an immediate tie to biological outcomes, they could be related to the results of 
applying hydrologic controls.  If management were pointed first at controlling hydrology, 
the SUSTAIN TSS output for that strategy could be compared to TSS targets to see if, 
indeed, a protection goal of no further water quality degradation would be met or, 
alternatively, how much TSS reduction would occur toward meeting a restoration goal. 

 
For Metals 
 
Determine if a statistically justified relationship (or a set of relationships for different portions of 
the watershed or different metals) exists to relate dissolved metals to other variables (e.g., total 
recoverable metals, TSS and/or flow rate). 
 

 If so, set dissolved metals targets on the basis of WDOE water quality criteria, translate 
to other variables based on the relationship(s), and use with SUSTAIN to gauge the 
effectiveness of stormwater management scenarios. 

 

 If not, but if reasonably strong relationship(s) are found, use them along with SUSTAIN 
output to make judgments about the probability of meeting metals water quality criteria 
as a function of success in controlling TSS. 

 
Solids Targets 
 
Strong linear relationship between TSS and turbidity were found in the Green River watershed 
data set.  Table 6 presents the regression equations derived from all available data and from 
storm flow measurements, in both cases working with detectable values.  Only 3.1 and 3.5 
percent of TSS and turbidity measurements, respectively, were below detection levels.  While 
non-detectable data could be incorporated by assigning values at half the detection limit or 
using a statistical technique, adding these fractional quantities to the data set of more than 1000 
points would make little difference in the outcome of the analyses. 
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Table 6.  Regression Equations and Associated Statistics Relating TSS with Turbidity Based on 
All Data and Storm Flow Data in King County’s Green River Watershed Data Set 

Statistic All Data Storm Flow Data 

Equation TSS = 1.90*Turbidity – 4.20 TSS = 1.94*Turbidity – 5.07 

R2* 0.877 0.883 

95% confidence 
limits (lower, upper) 

Coefficient 1.85, 1.94 1.88, 1.99 

Constant (-)5.23, (-)3.17 (-)6.71, (-)3.44 
*
 R

2
 represents the fraction of variability in a data set explained by the statistical model.  Both regressions 

are significant at P < 0.001. 

 
To investigate the difference in estimates with the two equations, TSS was computed for 
turbidity varying from 1 to 350 NTU.  The difference is < 10 percent with turbidity > 5 NTU, < 5 
percent with turbidity > 8 NTU, and ≤ 2 percent with turbidity > 12 NTU.  Thus, either equation 
can be used unless assessing relatively low solids transport. 
 
TSS targets will be computed from WDOE turbidity criteria:  ≤ 5 NTU increase over background 
when the background is ≤ 50 NTU or ≤ 10 percent increase over background when the 
background is > 50 NTU.  From the regression equation based on all data, the first criterion is 
equivalent to TSS increase above background of ≤ 5.3 mg/L,1 with the 95 percent confidence 
interval = 4.0-6.5 mg/L.2 
 
Metals Targets 
 
Copper Targets 
 
Analysis of the Green River watershed data set found somewhat tenuous relationships between 
copper (Cu) and TSS.  Regressing dissolved Cu (DCu) and both TSS and flow gave very poor 
fits.  However, regressing total Cu (TCu) and TSS and TCu and DCu using all available data 
yielded equations with R2 = 0.46-0.48.  While by this measure alone the equations are not as 
satisfactory as the TSS-turbidity regressions, the very large underlying data set results in quite 
narrow confidence bands on estimates computed using them.  Therefore, using the two 
equations in concert was judged to be a good basis for estimating the chances of meeting the 
WDOE DCu criterion.  Table 7 presents the regression equations and statistics derived from all 
available data and from storm flow measurements, again working with detectable values.  Only 
0.3 and 1.0 percent of TCu and DCu measurements, respectively, were below detection levels; 
and their inclusion would make very little difference in results.   

 
To investigate the difference in estimates with the equations based on all data and storm data 
only, TCu was computed for TSS varying from 1 to 350 mg/L.  The maximum deviation is 16 
percent; and the difference is < 10 percent with TSS > 25 mg/L, < 5 percent with TSS > 70 
mg/L, < 2 percent with TSS > 133 mg/L and ≤ 1.2 percent with TSS > 158 mg/L.  DCu was 
computed over the same range of values using the two equations.  It deviated at most by 15 
percent; and the difference is < 10 percent with TSS > 19 mg/L, < 5 percent with TSS in the 
range 48-169 mg/L, < 2 percent with TSS = 72-116 mg/L and < 1 percent TSS = 81-103 mg/L.  
Because the greatest interest is likely to be in distinctions at relatively low Cu concentrations, it 
would be best to select the equation complying with the objectives of the analysis (i.e., storm 
assessment or general overview).   
 

                                                 
1
 TSS = 1.90*5 – 4.20 = 5.3 

2
 TSSmin = 1.85*5 – 5.23 = 4.0; TSSmax = 1.94*5 – 3.17 = 6.5 
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Table 7.  Regression Equations and Associated Statistics Relating Total Copper with TSS and 
Dissolved Copper with Total Copper Based on All Data and Storm Flow Data in King County’s 
Green River Watershed Data Set 

Statistic 
Total Copper (TCu) Dissolved Copper (DCu) 

All Data Storm Data All Data Storm Data 

Equation 
TCu (µg/L) = 
0.050*TSS 

(mg/L) + 2.70 

TCu (µg/L) = 
0.048*TSS 

(mg/L) + 3.15 

DCu (µg/L) = 
0.36*TCu 

(µg/L) + 0.93 

DCu (µg/L) = 
0.31*TCu 

(µg/L) + 1.21 

R
2*

 0.461 0.478 0.480 0.393 

95% confidence limits 
(lower, upper) 

Coefficient 0.047, 0.054 0.044, 0.052 0.33, 0.38 0.28, 0.35 

Constant 2.51, 2.89 2.92, 3.37 0.80, 1.07 1.04, 1.39 
*
 R

2
 represents the fraction of variability in a data set explained by the statistical model.  All regressions 

are significant at P < 0.001. 

 
As an example using the upper 95 percent confidence limits, TSS = 30 mg/L, and the equation 
based on all data: 
 

TCu (µg/L) = 0.054*TSS (mg/L) + 2.89 = 4.5 µg/L; 
 

DCu (µg/L) = 0.38*TCu + 1.07 = 2.8 µg/L. 
 

This concentration would meet the WDOE criterion at a typical Puget Sound area stream water 
hardness. 
 
Zinc Targets 
 
The zinc situation is, in part, similar to copper.  The DZn-TSS relationship is poor, but the DZn-
TZn regression has a high R2.  Although the TZn-TSS relationship is not nearly as strong as 
TCu-TSS, the regression is significant and yields relatively narrow confidence intervals.  Using 
the pair of equations was hence again judged to offer some utility, if used cautiously, in 
estimating the risk of surpassing the Zn water quality criterion with given control on TSS.  Table 
8 provides the equations and regression statistics derived from all available data and from storm 
flow measurements, again working with detectable values.  Only 0.9 and 4.0 percent of TZn and 
DZn measurements, respectively, were below detection levels; and their inclusion would make 
very little difference in results.   
 
Table 8.  Regression Equations and Associated Statistics Relating Total Zinc with TSS and 
Dissolved Zinc with Total Zinc Based on King County’s Green River Watershed Data Set 

Statistic 
Total Zinc (TZn) Dissolved Zinc (DZn) 

All Data Storm Data All Data Storm Data 

Equation 
TZn (µg/L) = 

0.43*TSS 
(mg/L) + 8.76 

TZn (µg/L) = 
0.18*TSS 

(mg/L) + 12.3 

DZn (µg/L) = 
0.71*TZn 

(µg/L) – 2.56 

DZn (µg/L) = 
0.72*TZn 

(µg/L) – 3.20 

R
2*

 0.124 0.090 0.815 0.816 

95% confidence limits 
(lower, upper) 

Coefficient 0.35, 0.51 0.14, 0.23 0.68, 0.73 0.69, 0.74 

Constant 6.61, 10.9 9.74, 14.9 (-)3.23, (-)1.81 (-)4.16, (-)2.24 
*
 R

2
 represents the fraction of variability in a data set explained by the statistical model.  All regressions 

are significant at P < 0.001. 

 
To investigate the difference in estimates with the equations based on all data and storm data 
only, TZn was computed for TSS varying from 1 to 350 mg/L.  Unlike with the TSS-turbidity and 
TSS-TCu-DCu relationships, the results deviate substantially over the entire TSS range, by as 
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much as 53 percent.  Although the DZn-TZn regressions are far superior to the TZn-TSS 
equations, the high variability of the TZn calculations also induces the same amount of disparity 
in the DZn computations.  Therefore, it is essential that these equations be applied in strict 
compliance with the objectives of the analysis (i.e., storm assessment or general overview) and 
that uncertainty in the estimates always be determined. 
 
Table 9 presents results of example calculations of TZn and DZn at two TSS concentrations 
using the equations from both data subsets.  Note that the ranges of estimates overlap at the 
lower TSS but not at the higher concentration.  This observation accentuates the 
recommendation to take particular care in using the Zn regressions.  Used in this way they can 
still be useful to make judgments on whether or not the estimated DZn concentration would 
meet the WDOE criterion at the prevailing water hardness.  Since the equations from the two 
data subsets deviate less at relatively low than high TSS, this judgment would be less certain 
with higher sediment transport.  It would also have to be rendered more carefully with relatively 
low water hardness than with the opposite condition, because the criterion is more likely to fall in 
the uncertain range in softer water. 
 
Table 9.  Best estimates and 95 Percent Confidence Limits for TZn and DZn at Two TSS 
Concentrations Based on Equations Derived from All Data and Storm Flow Alone 

TSS 
(mg/L) 

 TZn (µg/L) DZn (µg/L) 

All Data Storm Flow Data All Data Storm Flow Data 

30 

Best Estimate 21.7 17.7 12.8 9.5 

95% Confidence 
Limits 

17.1-26.2 13.9-21.8 8.4-17.3a 5.5-13.9a 

200 
Best Estimate 94.8 48.3 64.7 31.6 

95% Confidence 
Limits 

76.6-113 37.7-60.9 48.9-80.6a 21.9-42.8a 

a DZn upper and lower confidence limits were computed using the lower and upper TZn 
confidence limits and the lower and upper limits for the DZn regression equations in Table 8.  

 
An Explanation Regarding Applying Targets to BMP Assessments 
 
The Green River watershed database used to develop water quality targets represents a 
situation with some but not heavy coverage with BMPs.  Implementation of a retrofit program 
would increase that coverage substantially.  BMPs would change the relationship between TSS 
and the other quantities (turbidity and metals), thus creating a distinction with the underlying 
database and the equations derived from it.  However, SUSTAIN implicitly assumes a reduction 
of those other quantities only in direct relation to TSS decrease.  In reality, reductions of 
dissolved metals, for example, would most likely occur over and above decreases in those 
metals related to TSS decline.  Ignoring those additional reductions would be conservative in 
terms of judging achievement of goals aimed at adherence to water quality criteria; i.e., there 
would be little risk of overestimating the benefit of BMPs.  This is the framework under which the 
targets will be applied in investigating BMP strategies to meet goals.  
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