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KING COUNTY,  WASHINGTON,  SURFACE WATER DESIGN MANUAL 
 

CHAPTER 3 
HYDROLOGIC ANALYSIS & DESIGN 

This chapter presents the concepts and rationale for the surface water controls and designs required by this 
manual and the acceptable methods for estimating the quantity and characteristics of surface water runoff.  
These methods are used to analyze existing and to design proposed drainage systems and facilities.   

Hydrologic concepts, tools and methodologies, and an overview of the assumptions and data requirements 
of the methods, are described for the following tasks: 

• Calculating runoff time series and flow statistics 

• Designing detention and infiltration facilities 

Previous editions of the Surface Water Design Manual relied on tools and methodologies using the King 
County Reduced Time Series (KCRTS) hydrologic modeling software.  Starting with this edition, the 
KCRTS software is replaced with the approved models listed in Reference 6-D, as updated.  Tools and 
methodologies specific to the software can be obtained from the software documentation and trainings 
provided by the software provider.  At this writing, the approved models include WWHM2012, available 
from the Washington State Department of Ecology (Ecology), and MGS Flood, available from MGS 
Engineering Consultants, Inc. 

Hydrologic tools and methodologies, and the assumptions and data requirements of the methods, are 
presented for the following tasks: 

• Sizing conveyance facilities 

• Analyzing conveyance capacities. 

Chapter Organization 
The information presented in this chapter is organized into three main sections: 

• Section 3.1, "Hydrologic Design Standards and Principles" (p. 3-3)  

• Section 3.2, "Runoff Computation and Analysis Methods" (p. 3-11)  

• Section 3.3, "Hydrologic Design Procedures and Considerations" (p. 3-37).  

These sections begin on odd pages so the user can insert tabs if desired for quicker reference. 

Other Supporting Information 
For specific guidance on the mechanics of using the approved modeling software for hydrologic analysis 
and design, refer to the associated approved model website and program documentation.  See Reference 6-
D for limited modeling guidance and requirements as applicable for specific tasks in this manual. 
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3.1 HYDROLOGIC DESIGN STANDARDS AND PRINCIPLES 
This section presents the rationale for and approach to hydrologic analysis and design in King County.  
Topics covered include the following: 

• "Hydrologic Impacts and Mitigation," Section 3.1.1 

• "Flow Control Standards," Section 3.1.2 (p. 3-5) 

• "Hydrologic Analysis Using Continuous Models," Section 3.1.3 (p. 3-7) 

3.1.1 HYDROLOGIC IMPACTS AND MITIGATION 

Hydrologic Effects of Urbanization 
The hydrologic effects of development can cause a multitude of problems, including minor nuisance 
flooding, degradation of public resources, diminished fish production, and significant flooding 
endangering life and property.  Increased stormwater flows expand floodplains, bringing flooding to 
locations where it did not occur before and worsening flood problems in areas already flood-prone.  
Increased stormwater flows also hasten channel erosion, alter channel structure, and degrade fish habitat.  

Human alteration of the landscape, including clearing, grading, paving, building construction, and 
landscaping, changes the physical and biological features that affect hydrologic processes.  Soil 
compaction and paving reduce the infiltration and storage capacity of soils.  This leads to a runoff process 
called Horton overland flow whereby the rainfall rate exceeds the infiltration rate, and the excess 
precipitation flows downhill over the soil surface.  This type of flow rapidly transmits rainfall to the stream 
or conveyance system, causing much higher peak flow rates than would occur in the unaltered landscape.   

Horton overland flow is almost nonexistent in densely vegetated areas, such as forest or shrub land, where 
the vast majority of rainfall infiltrates into the soil.  Some of this infiltrated water is used by plants, and 
depending on soil conditions, some of it percolates until it reaches the groundwater table.  Sometimes the 
percolating soil water will encounter a low-permeability soil or rock layer.  In this case, it flows laterally as 
interflow over the low-permeability layer until it reaches a stream channel.  Generally, forested lands 
deliver water to streams by subsurface pathways, which are much slower than the runoff pathways from 
cleared and landscaped lands.  Therefore, urbanization of forest and pasture land leads to increased 
stormwater flow volumes and higher peak flow rates. 

Land development increases not only peak flow rates but also changes annual and seasonal runoff 
volumes.  In forested basins in King County, about 55% of the rain that falls each year eventually appears 
as streamflow.  This percentage is called the yield of a basin.  The remaining 45% of the rain evaporates 
and returns to the atmosphere.  As trees are cleared and the soil is graded to make way for lawns and 
pastures, and as part of the land is covered with asphalt or concrete, the basin yield increases.  More of the 
rain becomes streamflow, and less evaporates.  In lowland King County, the yield of a basin covered with 
landscaped lawns would be about 65%, while the yield of an impervious basin would be about 85 to 90%. 

For these reasons, development without mitigation increases peak stormwater rates, stormwater volumes, 
and annual basin yields.  Furthermore, the reduction of groundwater recharge decreases summer base flows. 

In summary, the following are the hydrologic impacts of unmitigated development: 

• Increased peak flows 

• Increased durations of high flows 

• Increased stormwater runoff volumes 

• Decreased groundwater recharge and base flows 
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• Seasonal flow volume shifts 

• Altered wetland hydroperiods. 

The resulting economic and ecological consequences of these hydrologic changes include the following: 

• Increased flooding 

• Increased stream erosion 

• Degraded aquatic habitat 

• Changes to wetland species composition. 

Mitigation of Hydrologic Effects of Urbanization 
Engineered facilities can mitigate many of the hydrologic changes associated with development.  
Detention facilities can maintain the rates and/or durations of high flows at predevelopment levels.  
Infiltration facilities can control flow volumes and increase groundwater recharge as well as control flow 
rates and durations.  Conveyance problems can be avoided through analysis and appropriate sizing and 
design of conveyance facilities.  Engineered mitigation of the hydrologic impacts of development include 
the following: 

• Managing peak flow rates with detention facilities 

• Managing high flow durations with detention facilities 

• Reducing flow volumes and maintaining or enhancing groundwater recharge with infiltration facilities 

• Avoiding flooding problems with appropriately sized and designed conveyance systems 

• Bypassing erosion problems with tightlines. 

Engineered facilities cannot mitigate all of the hydrologic impacts of development.  Detention facilities 
do not mitigate seasonal volume shifts, wetland water level fluctuations, groundwater recharge reductions, 
or base flow changes.  Such impacts can be further reduced through the use of Low Impact Development 
(LID) techniques, beginning with careful site planning.  For instance, clustering of units to reduce 
impervious cover while maintaining site density is an effective way to limit hydrologic change.  Preserving 
native vegetation and minimizing soil disturbance or compaction in pervious areas also reduces hydrologic 
change.  Such non-engineered mitigation measures are encouraged by the County and are discussed in 
Core #9 and Appendix C of this manual and are referred to as Flow Control BMPs.  

Other LID stormwater management approaches, such as permeable pavements, bioretention, green roofs, 
and rainwater harvesting can be effective in reducing increases in surface water volumes.  The 
incorporation of these concepts in the design of the project is required, as detailed in Core Requirement #9 
and Appendix C.  Many of these approaches will result in a reduction in flow control facility size, so the 
flow control BMP requirements in Core Requirement #9 and Appendix C should be carefully considered 
and applied to maximize the benefits of this approach. 

Detention Facility Concepts 
The basic concept of a detention facility is simple: water is collected from developed areas and released at 
a slower rate than it enters the collection system.  The excess of inflow over outflow is temporarily stored 
in a pond or a vault and is typically released over a few hours or a few days.  The volume of storage 
needed is determined by (1) how much stormwater enters the facility (determined by the size and density 
of the contributing area), (2) how rapidly water is allowed to leave the facility, and (3) the level of 
hydrologic control the facility is designed to achieve.  

To prevent increases in the frequency of flooding due to new development, detention facilities are often 
designed to maintain peak flow rates at their predevelopment levels for recurrence intervals of concern 
(e.g., 2- and 10-year).  Such mitigation can prevent increases in the frequency of downstream flooding.  
Facilities that control only peak flow rates, however, usually allow the duration of high flows to increase, 
which may cause increased erosion of the downstream system.  For example, the magnitude of a 2-year 
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flow may not increase, but the amount of time that flow rate occurs may double.  Therefore, stream 
systems, including those with salmonid habitat, which require protection from erosion warrant detention 
systems that control the durations of geomorphically significant flows (flows capable of moving 
sediment).  Such detention systems employ lower release rates and are therefore larger in volume. 

3.1.2 FLOW CONTROL STANDARDS 
Core Requirement #3 requires that flow control facilities be designed to one of three primary flow control 
standards or various modifications of these standards based on the protection needs of the downstream 
system.  The three primary standards include Level 1 flow control, a peak matching standard; Level 2 flow 
control, a duration-matching standard; and Level 3 flow control, a duration-matching standard with an 
extreme peak-matching element added. In addition to the primary flow control standards, all projects are 
required to meet a low impact development standard that addresses flow durations below the primary 
standards.   

Note that projects that are required or opt to model compliance with the LID Performance Standard are 
still subject to meeting applicable area-specific flow control requirements as determined in Core 
Requirement 3 (Section 1.2.3). 

Level 1 Flow Control 
Level 1 flow control is designed to control flood flows at their current levels and to maintain peak flows 
within the capacity of the conveyance system for most storm events.  Specifically, Level 1 flow control 
requires matching the predevelopment peak flow rates for the 2-year and 10-year runoff events.  This 
standard may be modified under certain conditions to only match the 10-year peak flow as allowed in 
Section 1.2.3.1.A. 

The Level 1 flow control standard is typically applied to basins where studies have shown that additional 
flow attenuation provides no significant benefit to the receiving waters.  

Level 2 Flow Control 
Level 2 flow control is designed to control the durations of geomorphically significant flows and thereby 
maintain or, in some applications, reduce existing channel and streambank erosion rates.  A 
geomorphically significant flow is one that moves channel bedload sediments.  The flow that initiates 
transport of channel sediments varies from channel to channel, but one-half of the 2-year flow is 
considered a good general estimate of the erosion-initiating flow.  More specifically, Level 2 flow control 
requires maintaining the durations of high flows at their predevelopment levels for all flows greater than 
one-half of the 2-year peak flow up to the 50-year peak flow.  The predevelopment peak flow rates for the 
2-year and 10-year runoff events cannot be exceeded when applying Level 2 flow control.  The 
predevelopment condition to be assumed for matching durations varies depending on the County's 
conservation/protection goals for the downstream drainage system.  One of three different predevelopment 
conditions will be applied as specified in Section 1.2.3.1.  They include existing site conditions, historic 
site conditions (forested), and 75/15/10 conditions (i.e., 75% forest, 15% grass, and 10% impervious 
surface).  In most locations of the County, historic site conditions will apply. 

The use of historic site conditions is intended to provide a hydrologic regime that more closely matches 
the conditions to which local aquatic species have adapted. 

Level 3 Flow Control 
Level 3 flow control is intended to mitigate water level changes in certain volume-sensitive water bodies 
such as lakes, wetlands, closed depressions where severe flooding problems have been documented.  It is 
the most stringent standard applied in this manual (see Section 1.2.3.1).  Because such water bodies act as 
natural flow dampeners, it is difficult to detain collected stormwater beyond the natural residence time of 
these systems.  Therefore, the increased volume of runoff from new development inevitably increases the 

 
2016 Surface Water Design Manual 4/24/2016 

3-5 



SECTION 3.1 HYDROLOGIC DESIGN STANDARDS AND PRINCIPLES 
 

water level fluctuations of these water bodies.  The Level 3 flow control standard provides additional 
storage and increases the detention time to minimize these downstream impacts. 

This standard requires maintaining the durations of high flows at their predevelopment levels for all 
flows greater than one-half of the 2-year flow up to the 50-year flow and holding the 100-year peak flow 
rate at its predevelopment level.  The predevelopment peak flow rates for the 2-year and 10-year runoff 
events are also intended to be maintained when applying Level 3 flow control.  As with the Level 2 
standard, the predevelopment condition to be assumed for matching durations varies depending on the 
County's conservation/protection goals for the downstream drainage system. 

This standard is primarily applied in the contributing areas of specific water bodies with severe flooding 
problems, and which are known to be sensitive to flow volume changes. 

Low Impact Development (LID) Performance Standard  
Recent research indicates that traditional development techniques in residential, commercial, and industrial 
land development cause gross disruption of the natural hydrologic cycle with severe impacts to water and 
water-related natural resources. Based upon gross level applications of continuous runoff modeling and 
assumptions concerning minimum flows needed to maintain beneficial uses, watersheds must retain the 
majority of their natural vegetation cover and soils, and developments must minimize their disruption of 
the natural hydrologic cycle in order to avoid significant natural resource degradation in lowland streams.  
The Low Impact Development (LID) Performance standard is intended to mitigate development impacts 
to the low-flow regime not captured by the Level 1/2/3 flow control standards.   

The LID Performance Standard is defined as follows: 

For the target surfaces subject to Core Requirement 9, stormwater discharges shall 
match developed discharge durations to pre-developed durations for the range of 
pre-developed discharge rates from 8% of the 2-year peak flow to 50% of the      
2-year peak flow. Assume historic site conditions as the predeveloped condition.  

Projects demonstrate compliance with the LID Performance Standard through direct modeling (required 
for some projects).  All projects must also protect the soil moisture capacity of new pervious in accordance 
with KCC16.82.100 (F) and (G).  Note that flow control BMPs (FCBMPs) are modeled explicitly (e.g. 
tested infiltration rates with correction factors, etc. determined and selected per Section 5.2.1) when 
demonstrating compliance with the LID Performance Standard1. However, when modeling flow control 
facility sizing, water quality facility sizing, and the peak flow exceptions from the area-specific flow 
control facility requirement in Sections 1.2.3.1.A, B, and C, these BMPs are subject to the same 
limitations and allowed only the modeling credits described in Core Requirement 9 and Table 1.2.9.A2.  
FCBMPs used to demonstrate compliance with the LID Performance Standard must meet the 
implementation requirements described in Section 1.2.9.4. 

Where the LID Standard is Required 
Subdivision and road improvement projects on sites/lots 5 acres or larger that are located outside the 
UGA are required to demonstrate compliance with the LID Performance Standard through direct 
modeling, the only exception being that short subdivisions may opt to fully comply with requirements 
described in Section 1.2.9.3.3,  “Large Rural Subdivision and Large Rural Road Improvement Project 
BMP Requirements”.  

Non-subdivision projects making improvements on an individual site/lot 5 acres or larger  and 
located outside the UGA are required to either demonstrate compliance with the LID Performance 
Standard through direct modeling or fully comply with requirements described in Section 1.2.9.2.3, “Large 
Rural Lot BMP Requirements”.  

1 To assist the designer, several BMPs have been conservatively pre-sized for LID compliance using explicit modeling in the 
WWHM2012 hydrologic model.  See Core Requirement #9 and Appendix C for details.  

2 Application of modeling credits for flow control facility sizing requires infiltration to be turned off during the flow routing analysis 
to avoid double-counting the BMP benefit.  Explicit modeling of BMP infiltration for facility sizing is not allowed.  
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Other project types that are not subject to this modeling requirement may opt to use it in lieu of the BMP 
selection and application requirements described in Sections 1.2.9.1 and 1.2.9.2.  

3.1.3 HYDROLOGIC ANALYSIS USING CONTINUOUS MODELS 

The Need for Continuous Hydrologic Modeling 
This manual prescribes the use of a continuous hydrologic model for most hydrologic analyses rather 
than an event model.  Event models such as the Santa Barbara Urban Hydrograph (SBUH), King County 
Runoff Series (KCRTS) and the Soil Conservation Service (SCS)3 method were used in previous versions 
of this manual for all hydrologic analyses.  A continuous model was chosen because hydrologic problems 
in western Washington are associated with the high volumes of flow from sequential winter storms rather 
than high peak flows from short duration, high intensity rainfall events.   

The continuous hydrologic analysis tools prescribed in this manual are generically described as the 
“approved model”;  a list of the approved models is found in Reference 6-D (as updated).  At this 
writing, the approved continuous hydrologic models4 include the Western Washington Hydrologic 
Model (WWHM) and MGS Flood, both of which are variants of the Hydrologic Simulation Program-
FORTRAN (HSPF) model.  HSPF is also an approved model, but is more complex than other approved 
models and is typically used for basin planning and master drainage plan analyses. 

Continuous models are well suited to accounting for the climatological conditions in the lowland Puget 
Sound area.  Continuous models include algorithms that maintain a continuous water balance for a 
catchment to account for soil moisture and hydraulic conditions antecedent to each storm event (Linsley, 
Kohler, Paulhus, 1982), whereas event models assume initial conditions and only address single 
hypothetical storm events.  As a result, continuous hydrologic models are more appropriate for evaluating 
runoff during the extended wet winters typical of the Puget Sound area. 

The drawbacks of event models are summarized as follows: 

• Event methods inherently overestimate peak flows from undeveloped land cover conditions.  The 
overestimation is due, in part, to the assumption that runoff from forest and pasture land covers flows 
across the ground surface.  In actuality, the runoff from forests and pastures, on till soils, is dominated 
by shallow subsurface flows (interflow) which have hydrologic response times much longer than those 
used in event methods.  This leads to an over estimation of predeveloped peak flows, which results in 
detention facility release rates being overestimated and storage requirements being underestimated. 

• A single event cannot represent the sequential storm characteristics of Puget Sound winters. 

• Event models assume detention facilities are empty at the start of a design event, whereas actual 
detention facilities may be partially full as a result of preceding storms. 

• Testing of event-designed detention facilities with calibrated, long-term continuous hydrologic 
simulations demonstrates that these facilities do not achieve desired performance goals. 

• Event methods do not allow analysis of flow durations or water level fluctuations. 

The benefits of continuous hydrologic modeling are summarized as follows: 

• A continuous model accounts for the long duration and high precipitation volume of winter wet 
periods characterized by sequential, low-intensity rainfall events.  Continuous simulation uses 
continuous long-term records of observed rainfall rather than short periods of data representing 
hypothetical storm events.  As a result, continuous simulation explicitly accounts for the long duration 

3 The Soil Conservation Service (SCS) is now known as the National Resources Conservation Service (NRCS).  The method 
described in Urban Hydrology for Small Watersheds, Technical Release 55 (TR-55), June 1986, published by the NRCS, is 
commonly referred to as the “SCS method”. 

4 Starting with this edition of the Surface Water Design Manual, KCRTS is not on the list of approved models.  KCRTS model 
development is no longer supported by King County and support resources are limited. 
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rainfall events typically experienced in the Pacific Northwest as well as the effects of rainfall 
antecedent to major storm events. 

• HSPF has been shown to more accurately simulate runoff from basins with a wide range of sizes and 
land covers using the regional parameters developed by the United States Geologic Survey (USGS). 

• Continuous simulation allows direct examination of flow duration data for assessing the impacts of 
development on stream erosion and morphology.  An event model, whether using a 1-day or a 7-day 
storm, cannot provide such information. 

• A continuous model allows water level analysis for wetlands, lakes, and closed depressions whose 
water level regime is often dependent on seasonal runoff rather than on 1-day or 7-day event runoff. 

• Continuous models produce flow control facilities that more accurately and effectively achieve desired 
performance goals. 

The importance of continuous modeling in the Puget Sound area is illustrated in Figure 3.1.3.A (p. 3-9), 
which shows a small basin's runoff response to a series of winter storms and the outflow from a detention 
pond designed to control the peak annual flows from this basin.  Note that the largest outflow from the 
detention pond corresponds not to the peak inflow on 11/6/86, but rather to the high volume of flow from 
the sequential storms beginning on 11/19/86.  This demonstrates a key difference between continuous and 
event based models.   

With an event model, designers are accustomed to working with a single design storm event (e.g., 10-
year), which by definition has the same return period once routed through a reservoir (10-year inflow will 
always generate 10-year outflow).  With a continuous model, flow recurrence estimates are based on 
annual peak flow rates, with each time series being analyzed independently.  Events that generate annual 
peak inflows to a reservoir may not generate annual peak discharges from the reservoir.  In other words, 
the runoff event containing the 10-year inflow peak, when routed, may not create the 10-year outflow 
peak.  This is due to natural variability of storm peaks and volumes (e.g., high intensity/short duration 
thunderstorms as compared to moderate intensity/long duration winter storms) contained within a 
continuous record.    

Requirements of Continuous Hydrologic Modeling 
For the entire period of simulation, a continuous hydrologic model requires a continuous record of 
precipitation and evaporation at discrete time steps small enough to capture the temporal variability of 
hydrologic response, and it provides a continuous record of simulated flows at the same time step.  The 
quicker a basin responds hydrologically (e.g., due to small size, land cover, or lack of detention), the 
smaller the time step should be.  Time steps of 15 minutes are sufficient for most basins in the Puget 
Sound area.   

The continuous hydrologic model must include mathematical representations of hydrologic processes to 
determine the fate and movement of rainfall.  For example, a good continuous hydrologic model must 
include representations of infiltration processes to determine how much water infiltrates the soil and how 
much runs off the surface.  It must represent shallow and deep soil storage as well as the release of 
subsurface water to streams via interflow and groundwater flow, and it must also account for the loss of 
soil water to the atmosphere via evapotranspiration between rainfall events.  The benefit of all this 
computation is a complete hydrologic assessment including information on peak flow rates, flow 
durations, storm volumes, seasonal volumes, annual volumes, and water levels of receiving bodies.   
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FIGURE 3.1.3.A  EFFECTS OF SEQUENTIAL STORMS ON DETENTION PERFORMANCE  

 

 

11/6/86 - Thunderstorm-like event 
produces annual peak flow from 
developed site (inflow to pond).  

11/25/86 - Sequential storm events 
produce annual peak flow from 
forested site and pond outflow. 
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3.2 RUNOFF COMPUTATION AND ANALYSIS METHODS 
This section presents the following four runoff computation methods accepted for hydrologic analysis and 
design in King County: 

• The Rational Method described below and detailed in Section 3.2.1 (p. 3-13)  

• The TR-55 or SBUH methods described below. 

• The  Runoff Files Method described below and detailed in Section 3.2.2  (p. 3-21)  

• The Hydrologic Simulation Program-FORTRAN (HSPF) model described below and detailed in 
Section 3.2.4 (p. 3-34).  

 ACCEPTABLE USES OF RUNOFF COMPUTATION METHODS 
Acceptable uses of the four runoff computation methods are summarized below and in Table 3.2 (p. 3-12): 

• Rational Method: This method is most appropriate for sizing new conveyance systems that drain 
smaller, quickly responding tributary areas (i.e., less than 10 acres) where very short, intense storms 
tend to generate the highest peak flows.  The Rational Method may also be used for conveyance sizing 
in any size basin if the attenuation effects of existing storage features within the basin are ignored. 

• TR-55/SBUH Methods: The Natural Resources Conservation Service (NRCS, formerly the Soil 
Conservation Service (SCS)) TR-55 method or the SBUH method of the 1990 King County Surface 
Water Design Manual may be used for conveyance sizing where tributary areas are greater than or 
equal to 10 acres and if storage features are ignored.  The peak flows from these single-event models 
are considered conservative for larger tributary areas if the flows are not routed through existing 
storage features.  The TR-55 method is also used for water quality volume calculation in this manual.  
For more background information, refer to NRCS Publication 210-VI-TR-55, Second Edition (June 
1986) or the 1990 SWDM. 

• The Runoff Files Method: This continuous modeling method using the approved model is the most 
versatile for quickly performing many of the computations summarized in Table 3.2 (p. 3-12).  For 
conveyance sizing and analysis, the peak flows from the approved model are most accurate when the 
shortest possible time step is used.  Unlike the Rational Method, the approved model may be used for 
tributary areas less than 10 acres where there is a significant storage feature(s).  In previous editions of 
this manual, sizing and analysis of storage features and volume-based water quality facilities used 
hourly time steps for determination of predevelopment discharges and for routing purposes.  As of this 
edition, King County requires 15-minute time steps5 for sizing of all flow control facilities, water 
quality facilities and conveyance to provide consistent management of surface water and protect 
against cumulative increases in peak flows on a basin-wide basis (see Sections 3.3.1 and 3.3.2).   

Methods for analysis and design of detention storage and water levels6 require the use of the approved 
model.  See the user’s documentation for background and guidance.   

• HSPF Model: For projects in Large Project Drainage Review (see Section 1.1.2.5), the County may 
require HSPF modeling for formulating a Master Drainage Plan (see Master Drainage Planning for 
Large Site Developments - Process and Requirement Guidelines available from DNRP or DPER).  
The County also generally encourages use of HSPF for tributary areas larger than 200 acres.  The 
HSPF model can be used wherever the approved model is allowed for sizing and analysis of 
conveyance systems, flow control facilities, and water quality facilities.  For such projects draining to 

5  For locations where the 15-minute time step is not available in the approved model, the 1-hour time step is acceptable.  
6  One of the simplest and most commonly used level pool routing methods is described in the Handbook of Applied Hydrology 

(Chow, Ven Te, 1964) and elsewhere, and summarized in Reference 6-C, It is based on the continuity equation and can be 
completed with a spreadsheet.  Although not approved for design with this manual, it provides a background for modeled 
routing techniques. 
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a wetland or potentially impacting groundwater resources or stream base flows, the County may 
require the collection of actual rainfall and runoff data to be used in developing and calibrating the 
HSPF model. 

 

TABLE 3.2 ACCEPTABLE USES OF RUNOFF COMPUTATION METHODS 

TYPE OF 
COMPUTATION 

 
APPLIED TO 

Rational Method TR 55/SBUH THE APPROVED 
MODEL 

HSPF 

 
PEAK FLOW 
CONVEYANCE 
SIZING INC. 
TESC(1)   
(DESIGN 
FLOWS) 
(See Chapter 4 for 
hydraulic analysis 
procedures) 

Tributary 
Areas < 10 ac 

(measured to 
individual 
conveyance 
elements) 

REQUIRED for 
undetained 
areas,(2) and OKAY 
for detained areas 
if no storage 
routing(3) is 
performed 

 OKAY if majority of 
tributary area is 
detained(4) and  
15-minute time 
steps are used 

OKAY if majority of 
tributary area is 
detained(4) and  
15-minute time 
steps are used 

Tributary 
Areas ≥ 10 ac 

OKAY if no storage 
routing(3) is 
performed 

OKAY if no 
storage 
routing(3) is 
performed 

OKAY if using 15-
minute time steps 
(storage routing is 
allowed) 

OKAY if using 15-
minute time steps 
(storage routing is 
allowed) 

LEVEL-POOL 
ROUTING 
FLOW CONTROL 
(NEW/EXIST.) & 
WQ FACILITY 
SIZING AND 
ANALYSIS 

Projects in  
Full Drainage 
Review 

  OKAY  
(must use 15-
minute time steps) 

OKAY  
(must use 15-
minute time steps) 

Projects in 
Large Project 
Drainage 
Review 

  MAY BE 
ALLOWED(5) 
(must use 15-
minute time steps) 

MAY BE 
REQUIRED(5) 
(must use 15-
minute time steps) 

 
 
 
DOWNSTREAM 
ANALYSIS 

Projects in  
Full or 
Targeted 
Drainage 
Review 

OKAY if no storage 
routing(3) is 
performed 

OKAY for 
tributary areas  
≥ 10 ac. if no 
storage 
routing(3) is 
performed 

OKAY if using  
15-minute time 
steps  

OKAY if using  
15-minute time 
steps  

Projects in 
Large Project 
Drainage 
Review 

MAY BE 
ALLOWED(5) if 
used as described 
in the box above 

MAY BE 
ALLOWED(5) if 
as described in 
the box above 

MAY BE 
ALLOWED(5) if 
used as described 
in the box above 

 

PEAK FLOWS 
FOR APPLYING 
EXEMPTIONS & 
THRESHOLDS 

All Projects   OKAY  
(must use 15-
minute time steps) 

OKAY  
(must use 15-
minute time steps) 

Notes: 
(1) Water quality design flow rates are determined as described in Section 6.2.1 (p. 6-17).  
(2) Undetained areas are those upstream of detention facilities or other storage features. 
(3) Storage routing uses the Level Pool Routing technique (described in Reference 6-C) or other similar method to account 

for the attenuation of peak flows passing through a detention facility or other storage feature. 
(4) The majority of the tributary area is considered detained if the runoff from more than 50% of the tributary area is 

detained by a detention facility or other storage facility. 
 (5) For projects in Large Project Drainage Review, the selection of methodology for detention sizing and/or downstream 

analysis becomes a site-specific or basin-specific decision that is usually made by DPER during the scoping process 
for master drainage plans.  Guidelines for selecting the approved model, HSPF, or calibrated HSPF are found in the 
King County publication Master Drainage Planning for Large or Complex Site Developments, available from DNRP or 
DPER. 
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3.2.1  RATIONAL METHOD 
 

3.2.1 RATIONAL METHOD 
The Rational Method is a simple, conservative method for analyzing and sizing conveyance elements 
serving small drainage subbasins, subject to the following specific limitations: 

• Only for use in predicting peak flow rates for sizing conveyance elements  

• Drainage subbasin area A cannot exceed 10 acres for a single peak flow calculation 

• The time of concentration Tc must be computed using the method described below and cannot exceed 
100 minutes.  It is also set equal to 6.3 minutes when computed to be less than 6.3 minutes.   
Note: Unlike other methods of computing times of concentration, the 6.3 minutes is not an initial 
collection time to be added to the total computed time of concentration.  

 RATIONAL METHOD EQUATION 
The following is the traditional Rational Method equation: 

QR  = CIRA (3-1) 

where  QR = peak flow (cfs) for a storm of return frequency R  
   C = estimated runoff coefficient (ratio of rainfall that becomes runoff) 
   IR = peak rainfall intensity (inches/hour) for a storm of return frequency R 
   A = drainage subbasin area (acres) 
 

"C" Values 
The allowable runoff coefficients to be used in this method are shown in Table 3.2.1.A (p. 3-15) by type of 
land cover.  These values were selected following a review of the values previously accepted by King 
County for use in the Rational Method and as described in several engineering handbooks.  The values for 
single family residential areas were computed as composite values (as illustrated in the following 
equation) based on the estimated percentage of coverage by roads, roofs, yards, and unimproved areas for 
each density.  For drainage basins containing several land cover types, the following formula may be used 
to compute a composite runoff coefficient, Cc: 

Cc = (C1A1 + C2A2 +... + CnAn)/At (3-2) 

where  At  = total area (acres) 
   A1,2,...n = areas of land cover types (acres) 
   C1,2,...n = runoff coefficients for each area land cover type 
 
  

"IR" Peak Rainfall Intensity 
The peak rainfall intensity IR for the specified design storm of return frequency R is determined using a 
unit peak rainfall intensity factor iR in the following equation: 

IR = (PR)(iR) (3-3) 

where  PR = the total precipitation at the project site for the 24-hour duration storm event for the 
given return frequency.  Total precipitation is found on the Isopluvial Maps in  
Figure 3.2.1.A through Figure 3.2.1.D beginning on page 3-16. 

   iR = the unit peak rainfall intensity factor 
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SECTION 3.2 RUNOFF COMPUTATION AND ANALYSIS METHODS 
 

The unit peak rainfall intensity factor iR is determined by the following equation: 

iR = (aR)(Tc)
( )−bR  (3-4) 

where  Tc = time of concentration (minutes), calculated using the method described below and 
subject to equation limitations (6.3 ≤ Tc ≤ 100) 

  aR, bR = coefficients from Table 3.2.1.B (p. 3-15) used to adjust the equation for the design storm 
return frequency R 

 
This "iR" equation was developed by DNRP from equations originally created by Ron Mayo, P.E.  It is 
based on the original Renton/Seattle Intensity/Duration/Frequency (I.D.F.) curves.  Rather than 
requiring a family of curves for various locations in King County, this equation adjusts proportionally the 
Renton/Seattle I.D.F. curve data by using the 24-hour duration total precipitation isopluvial maps.  This 
adjustment is based on the assumption that the localized geo-climatic conditions that control the total 
volume of precipitation at a specific location also control the peak intensities proportionally. 

Note: Due to the mathematical limits of the equation coefficients, values of Tc less than 6.3 minutes or 
greater than 100 minutes cannot be used.  Therefore, real values of Tc less than 6.3 minutes must be 
assumed to be equal to 6.3 minutes, and values greater than 100 minutes must be assumed to be equal to 
100 minutes. 

"Tc" Time of Concentration 
The time of concentration is defined as the time it takes runoff to travel overland (from the onset of 
precipitation) from the most hydraulically distant location in the drainage basin to the point of 
discharge.  Note: When Cc (see Equation 3-2) of a drainage basin exceeds 0.60, it may be important 
to compute Tc and peak rate of flow from the impervious area separately.  The computed peak rate of 
flow for the impervious surface alone may exceed that for the entire drainage basin using the value at 
Tc for the total drainage basin.  The higher of the two peak flow rates shall then be used to size the 
conveyance element.   

Tc is computed by summation of the travel times Tt of overland flow across separate flowpath 
segments defined by the six categories of land cover listed in Table 3.2.1.C (p. 3-15), which were 
derived from a chart published by the Soil Conservation Service in 1975.  The equation for time of 
concentration is: 

 Tc = T1 + T2 +...+ Tn (3-5) 

where  T1,2,...n = travel time for consecutive flowpath segments with different land cover 
categories or flowpath slope 

 
Travel time for each segment t is computed using the following equation: 

 Tt  = 
L
V60

 
(3-6) 

where  Tt = travel time (minutes) Note: Tt  through an open water body (such as a pond) shall be 
assumed to be zero with this method 

   L = the distance of flow across a given segment (feet) 
   V = average velocity (fps) across the land cover  =  kR so  
     where   kR = time of concentration velocity factor; see Table 3.2.1.C 
        so = slope of flowpath (feet/feet) 
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TABLE 3.2.1.A  RUNOFF COEFFICIENTS - "C" VALUES FOR THE RATIONAL METHOD 

General Land Covers Single Family Residential Areas* 

Land Cover C Land Cover Density C 

   Dense forest 
   Light forest 
   Pasture 
   Lawns 
   Playgrounds 
   Gravel areas 
   Pavement and roofs 
   Open water (pond, lakes, 

wetlands) 

0.10 
0.15 
0.20 
0.25 
0.30 
0.80 
0.90 
1.00 

 

  0.20 DU/GA (1 unit per 5 ac.) 
  0.40 DU/GA (1 unit per 2.5 ac.) 
  0.80 DU/GA (1 unit per 1.25 ac.) 
  1.00 DU/GA 
  1.50 DU/GA 
  2.00 DU/GA 
  2.50 DU/GA 
  3.00 DU/GA 
  3.50 DU/GA 
  4.00 DU/GA 
  4.50 DU/GA 
  5.00 DU/GA 
  5.50 DU/GA 
  6.00 DU/GA 

0.17 
0.20 
0.27 
0.30 
0.33 
0.36 
0.39 
0.42 
0.45 
0.48 
0.51 
0.54 
0.57 
0.60 

* Based on average 2,500 square feet per lot of impervious coverage. 
For combinations of land covers listed above, an area-weighted "Cc x At" sum should be computed based on the 
equation Cc x At = (C1 x A1) + (C2 x A2) + ...+(Cn x An), where A8 = (A1 + A2 + ...+An), the total drainage basin area. 

 

TABLE 3.2.1.B  COEFFICIENTS FOR THE RATIONAL METHOD "iR" EQUATION 

Design Storm Return Frequency aR bR 

2 years  
5 years 

10 years 
25 years 
50 years 

100 years 

1.58 
2.33 
2.44 
2.66 
2.75 
2.61 

0.58 
0.63 
0.64 
0.65 
0.65 
0.63 

 

TABLE 3.2.1.C  kR VALUES FOR Tt USING THE RATIONAL METHOD 

Land Cover Category kR 

   Forest with heavy ground litter and meadow 2.5 

   Fallow or minimum tillage cultivation 4.7 

   Short grass pasture and lawns 7.0 

   Nearly bare ground 10.1 

   Grassed waterway 15.0 

   Paved area (sheet flow) and shallow gutter flow 20.0 
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FIGURE 3.2.1.A  2-YEAR 24-HOUR ISOPLUVIALS 
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FIGURE 3.2.1.B  10-YEAR 24-HOUR ISOPLUVIALS 
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FIGURE 3.2.1.C  25-YEAR 24-HOUR ISOPLUVIALS 
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FIGURE 3.2.1.D  100-YEAR 24-HOUR ISOPLUVIALS 
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 RATIONAL METHOD EXAMPLE 
Compute the peak flow Q25 to size a new roadway cross culvert for a 9.8-acre drainage basin east of Kent, 
P25 = 3.42 inches.  

Given:  AREAS 
   A1 = 4.3 acres of single family residential area at 3.8 DU/GA 
   A2 = 2.3 acres of light forest 
   A3 = 3.2 acres of pasture  
   At = 9.8 total acres 

   DESCRIPTION OF FLOWPATH SEGMENTS FOR Tc 
   L1 = 300 feet  s1 = 0.08   forest land cover   kR = 2.5 
   L2 = 200 feet  s2 = 0.03   meadow     kR = 2.5 
   L3 = 1000 feet  s3 = 0.015  grassed waterway (ditch)  kR = 15.0 

Compute: COMPOSITE RUNOFF COEFFICIENT Cc 
   A1: C1 = From Table 3.2.1.A (p. 3-15), C for 4.00 DU/GA = 0.48, C for 3.50 DU/GA = 

0.45.  Therefore, C1 for 3.80 DU/GA = 0.47 by visual interpolation. 
   A2: C2 = 0.15 
   A3: C3 = 0.20 

   Cc = [(C1 x A1) + (C2 x A2) + (C3 x A3)]/At 
    = [(0.47 x 4.3) + (0.15 x 2.3) + (0.20 x 3.2)]/9.8 = 0.31 

   PEAK RAINFALL INTENSITY IR 

   First, compute Tc: 

    T1 = L
V

L
k sR

1

1

1

160 60
300

60 2 5 0 08
= =

( ) ( . . )
 

     = 7 minutes 

    T2 = L
V

L
k sR

2

2

2

260 60
200

60 2 5 0 03
= =

( ) ( . . )
 

     = 8 minutes 

    T3 = L
V

L
k sR

3

3

3

360 60
1000

60 15 0 015
= =

( ) ( . )
 

     = 9 minutes 

    Tc = T1 + T2 + T3 = 7 + 8 + 9 = 24 minutes 

 
   Second, compute iR for R = 25: 

    i25 = (aR)(Tc)
(-bR)

 = (2.66)(24)
- (0.65)

 = 0.34 

 
   Third, compute IR for R = 25: 

    I25 = (P25)(i25) = (3.42)(0.34) = 1.16 

 
   PEAK RUNOFF RATE 

   Q25 = C I25 A = Cc I25 A = (0.31)(1.16)(9.8) = 3.5 cfs 
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3.2.2 CONTINUOUS MODELS AND THE RUNOFF FILES METHOD 
The approved continuous model/runoff files implementations of HSPF were developed as tools that have 
the accuracy and versatility of HSPF but are much simpler to use and provide a framework for efficient 
design of onsite stormwater detention facilities.  This section describes the Runoff Files Method. The term 
runoff files refers to a database of continuous flows presimulated by HSPF.  The KCRTS software package 
has formerly been a tool for using this flow database.  Current approved continuous models are listed in 
Reference 6-D (as updated); as of this writing, they include the Western Washington Hydrology Model 
(WWHM) and MGSFlood7.  Projects are required to use the same model throughout unless otherwise 
approved through the adjustment process described in Section 1.4. 

The Runoff Files method was developed as a hydrologic modeling tool for western King County to 
produce results (design flows, detention pond sizing, etc.) comparable to those obtained with the U.S. 
Environmental Protection Agency's HSPF model but with significantly less effort.  This is achieved by 
providing the user with a set of time series files of unit area land surface runoff ("runoff files") 
presimulated with HSPF for a range of land cover conditions and soil types within King County.  The 
design flows are estimated and detention facilities are designed by directly accessing and manipulating the 
runoff file data by means of the continuous modeling software.  Typical basic capabilities of the 
continuous modeling software include: 

• Estimating time series of flows for a specified land use and location within King County 

• Analyzing flow frequency and duration 

• Analyzing water surface frequency and duration 

• Plotting analysis results 

• Sizing detention facilities. 

 DEVELOPMENT OF THE RUNOFF FILES 
To compile the runoff files, the land surface hydrologic response (represented by a time series of unit area 
land surface runoff) was generated by HSPF with regional parameters for a variety of land use 
classifications and for two long-term (over 50-year) rainfall stations, one representing the western 
lowlands of King County (Sea-Tac Airport) and the other representing the eastern foothills (Landsburg).  
The methods for developing the runoff files are specific to the individual approved models.  Consult the 
program documentation and the software provider’s website information for the particular model for 
background on the development of the runoff files for that model.  

Runoff time series were generated with data from these and other stations for the following eight soil/land 
cover types: 

• Impervious 

• Till forest 

• Till pasture 

• Till grass 

• Outwash forest 

• Outwash pasture 

• Outwash grass 

• Wetland. 

7 King County no longer provides further development, training and maintenance of the KCRTS model used in previous editions 
of this manual, and provides limited support dependent on staff availability. 
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HSPF and the approved models simulate surface runoff, interflow, and groundwater flow.  Groundwater 
flow, induced by surface runoff or occurring naturally, is usually lost from the system through the 
analysis, but may require consideration in the analysis if it expresses to the surface.  Consult the user’s 
guide for application of the interflow and groundwater components of runoff in the approved continuous 
model.   

3.2.2.1 GENERATING TIME SERIES 
Most hydrologic analyses will require time series of flows for different land use conditions.  For example, 
to size a Level 1 flow control detention facility, 2- and 10-year peaks from the facility discharge time 
series must be compared with 2- and 10-year peaks from the predevelopment time series.  To generate a 
flow time series with the approved continuous model, depending on the model used, the program applies 
the following:  

1. As determined by selecting the project’s location on a map,  

• The rainfall region of the county within which the project lies (i.e., the rainfall station—Sea-Tac 
or Landsburg) and multiplier (a regional scale factor applied to the runoff files) to account for 
variations in rainfall volumes between the project site and the rainfall station, or 

• A calibrated area-specific rainfall map developed from the Sea-Tac/Landsburg rainfall data. 

• Site specific calibrated rainfall data may also developed as part of an HSPF analysis. See the 
approved model’s documentation for background on the development of the runoff files for the 
model. 

2. The time step to be used in the analysis.  As of this manual update, 15-minute time steps are 
required for all applications including detention sizing and volume analysis (past editions 
required 1-hour time steps for detention sizing).  

3. The complete historical runoff record used in the analysis: 

4. The amount of land (acreage) of each soil/cover group for the subbasin under study, as calculated per 
model methodology and the methods described in this chapter.  

5. If applicable, the percentage of impervious area that is effectively connected to the drainage system, 
typically accounted for by adjusting actual impervious area for the model inputs.   

See the user’s documentation for the approved model for methodology and guidance for generating a new 
time series.  See Reference 6-D for specific guidance to be used with this manual. 

 SELECTION OF PRECIPITATION RECORD AND REGIONAL SCALE FACTOR 
As noted in the previous section, runoff files King County were developed using data primarily from two 
rainfall stations, Sea-Tac Airport and Landsburg.  The regions within King County to which data from the 
two stations apply were delineated such that data from Sea-Tac Airport is applied to the drier western part 
of the county, while data from Landsburg is applied to the wetter eastern part of the county, including 
developable areas in the Cascade foothills.  The line separating the two regions was based on daily rainfall 
depths. 

The regional scale factor is a geographically variable multiplier applied to the flow time series to account 
for the considerable variations in rainfall amounts, and hence runoff, within the two regions, especially in 
the eastern region represented by rainfall data from Landsburg.  Whereas previous models (e.g., KCRTS) 
required determination by mapped values as data input, the scaling effects are determined in the currently 
approved continuous models by selecting the project location within the model (e.g., WWHM and MGS 
Flood).  See the approved model user’s documentation for background and guidance.  
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 CATEGORIZATION OF SOIL TYPES AND LAND COVER 
The Runoff Files method typically supports several land use classifications, including till forest, till 
pasture, till grass, outwash forest, outwash pasture, outwash grass, wetland, and impervious.  These 
classifications incorporate both the effects of soil type and land cover.  In the SCS method, four different 
hydrologic soil groups are defined (A, B, C, and D) based on soil type as mapped by the SCS.  The SCS 
also defines hydrologic response for about a dozen different land use or cover types.  The SCS method 
therefore allows the user a considerably greater degree of flexibility in defining land cover and soil types 
than do continuous models.  However, the flexibility and apparent detail available with the SCS method 
cannot be supported on the basis of the data used to develop that method.  The Runoff Files method 
minimizes the number of land use classifications, thereby simplifying both the analysis and review of 
development proposals. 

Soil Groups for the Continuous Model 
The following soil characterization is generally true for continuous models; however, consult the model 
documentation for specific applicability. 

Till Soils 
Till soils are underlain at shallow depths by relatively impermeable glacial till.  The principal SCS soil 
group within King County classified as a till soil is the Alderwood series (SCS hydrological soil group 
C), which is the most common soil type throughout the western part of the county.  The hydrologic 
response of till soils in an undeveloped, forested state is characterized by relatively slight surface 
runoff, substantial interflow occurring along the interface between the till soil and the underlying 
glacial till, and slight groundwater seepage into the glacial till.  

Bedrock soils, primarily Beausite and Ovall soils in King County, are underlain by either sandstone or 
andesite bedrock, and a large group of alluvial soils.  

Alluvial soils are found in valley bottoms.  These are generally fine-grained and often have a high 
seasonal water table.  There has been relatively little experience in calibrating the HSPF model to 
runoff from these soils, so in the absence of better information, these soils have been grouped as till 
soils.  Most alluvial soils are classified by the SCS in hydrologic soil groups C and D.   

Outwash Soils 
Outwash soils are formed from highly permeable sands and gravels.  The principal SCS soil group 
classified as an outwash soil is the Everett series.  Where outwash soils are underlain at shallow 
depths (less than 5 feet) by glacial till or where outwash soils are saturated, they may need to be 
treated as till soils for the purpose of application in the model.  Refer to the model documentation for 
specifics.  

Wetland Soils 
Wetland soils have a high water content, are poorly drained, and are seasonally saturated.  For the 
purposes of applying continuous modeling in King County, wetland soils can be assumed to coincide 
with wetlands as defined in the critical areas code (KCC 21A.24). 

The approximate correspondence between SCS soil types and the appropriate soil group for typical 
continuous modeling is given in Table 3.2.2.A (p. 3-24) (refer to the model documentation for specific soil 
group application for the model).  If the soils underlying a proposed project have not been mapped, or if 
existing soils maps are in error or not of sufficient resolution, then a soils analysis and report shall be 
prepared and stamped by a civil engineer with expertise in soils to verify underlying soil conditions. 
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TABLE 3.2.2.A  EQUIVALENCE BETWEEN SCS SOIL TYPES AND TYPICAL CONTINUOUS 
MODELING SOIL TYPES 

SCS Soil Type SCS 
Hydrologic 
Soil Group 

Soil Group for 
Continuous 

Model 

Notes 

Alderwood (AgB, AgC, AgD) C Till  
Arents, Alderwood Material (AmB, AmC) C Till  
Arents, Everett Material (An) B Outwash 1 
Beausite (BeC, BeD, BeF) C Till 2 
Bellingham (Bh) D Till 3 
Briscot (Br) D Till 3 
Buckley (Bu) D Till 4 
Earlmont (Ea) D Till 3 
Edgewick (Ed) C Till 3 
Everett (EvB, EvC, EvD, EwC) A/B Outwash 1 
Indianola (InC, InA, InD) A Outwash 1 
Kitsap (KpB, KpC, KpD) C Till  
Klaus (KsC) C Outwash 1 
Neilton (NeC) A Outwash 1 
Newberg (Ng) B Till 3 
Nooksack (Nk) C Till 3 
Norma (No) D Till 3 
Orcas (Or) D Wetland  
Oridia (Os) D Till 3 
Ovall (OvC, OvD, OvF) C Till 2 
Pilchuck (Pc) C Till 3 
Puget (Pu) D Till 3 
Puyallup (Py) B Till 3 
Ragnar (RaC, RaD, RaC, RaE) B Outwash 1 
Renton (Re) D Till 3 
Salal (Sa) C Till 3 
Sammamish (Sh) D Till 3 
Seattle (Sk) D Wetland  
Shalcar (Sm) D Till 3 
Si (Sn) C Till 3 
Snohomish (So, Sr) D Till 3 
Sultan (Su) C Till 3 
Tukwila (Tu) D Till 3 
Woodinville (Wo) D Till 3 
Notes: 
1. Where outwash soils are saturated or underlain at shallow depth (<5 feet) by glacial till, they should 

be treated as till soils. 
2. These are bedrock soils, but calibration of HSPF by King County DNRP shows bedrock soils to 

have similar hydrologic response to till soils. 
3. These are alluvial soils, some of which are underlain by glacial till or have a seasonally high water 

table.  In the absence of detailed study, these soils should be treated as till soils. 
4. Buckley soils are formed on the low-permeability Osceola mudflow.  Hydrologic response is 

assumed to be similar to that of till soils. 
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Land Cover Types in Continuous Modeling 
Continuous models support land cover types including forest, pasture, grass, and impervious.  These cover 
types shall be applied in accordance with Core Requirement #3 and as specified in Table 3.2.2.B.  
Predevelopment land cover types are determined by whether the project is in a Basic or Conservation Flow 
Control Area and whether the area in question is a target surface, as defined in Section 1.2.3.1.  Target 
surfaces within Basic Flow Control Areas and non-target surfaces are modeled as existing site conditions; 
for target surfaces in Conservation Flow Control Areas the predeveloped condition is assumed to be 
historic site conditions.  
 

TABLE 3.2.2.B  CONTINUOUS MODEL COVER GROUPS AND AREAS OF APPLICATION 

Continuous 
Model APPLICATION 

Cover Group Predevelopment Post-Development 

Forest All forest/shrub cover, 
irrespective of age. 

All permanent (e.g., protected by covenant or 
CAO designation) onsite forest/shrub cover, 
irrespective of age, planted at densities sufficient 
to ensure 80%+ canopy cover within 5 years. 

Pasture All grassland, pasture land, 
lawns, and cultivated or 
cleared areas, except for 
lawns in redevelopment areas 
with predevelopment densities 
in excess of 4 DU/GA. 

Unprotected forest in rural residential 
development shall be considered half pasture, half 
grass.  

Pasture areas to be retained on large rural 
residential lots (10 acres or greater) may be 
modeled as half pasture, half grass.  

Grass Lawns in redevelopment areas 
with predevelopment densities 
in excess of 4 DU/GA. 

All post-development grassland and landscaping 
and all onsite forested land not protected by 
covenant or SASA designation (except in rural 
areas as noted above).  

For purposes of runoff modeling, underdrained 
pervious areas may be modeled explicitly to 
account for attenuation and infiltration, or may be 
modeled as 50% impervious/50% grass where 
either: (a) there is no added liner, (b) where the 
added liner is a treatment liner, or (c) where the 
added liner is one that does not restrict infiltration 
rates below the in situ soil infiltration rate.    Other 
lined underdrained systems must be modeled 
explicitly or as 100% impervious. 

Wetland All delineated wetland areas 
(except cultivated/drained 
farmland).  

All delineated wetland areas (except 
cultivated/drained farmland). 

Impervious(1) All impervious surfaces, 
including heavily compacted 
gravel and dirt roads, parking 
areas, etc., and open water 
bodies (ponds and lakes).  

All impervious surfaces, including compacted 
gravel and dirt roads, parking areas, etc., and 
open water bodies, including onsite detention and 
water quality ponds.(2) 

(1) Impervious acreage used in computations should be the effective impervious area (EIA).  This is 
the gross impervious area multiplied by the effective impervious fraction (see Table 3.2.2.D, p. 3-
28), or the effective area as determined through flow control BMP credit reductions.  Non-effective 
impervious areas are considered the same as the surrounding pervious land cover. 

(2) To avoid iterations in the facility sizing process, the "assumed size" of the facility need only be 
within 80% of the final facility size when modeling its contribution of runoff from direct rainfall.  
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The following factors are considered in specifying the above land cover types to be used in hydrologic 
analysis with continuous modeling: 

• Cover types are applied to anticipate ultimate land use conditions.  For example, probable clearing of 
woodland after development is nominally complete suggests that the post-development land use be 
specified as grassland (either pasture or grass) unless the forest cover is protected by covenant. 

• In areas of redevelopment, there are often significant changes between the predevelopment and post-
development efficiencies of the drainage system.  For example, in conversion of low density 
residential areas to higher density land use, impervious areas prior to redevelopment may not be 
efficiently connected to a drainage system (e.g., downspouts draining to splash blocks, ditched instead 
of piped roadway systems).  These problems are addressed by defining an "effective impervious 
fraction" for existing impervious areas and by generally requiring predevelopment grasslands to be 
modeled as pasture land. 

• All onsite, predevelopment forest/shrub cover and all offsite forest/shrub cover is defined as "forest," 
irrespective of age.  Post-development onsite land use is defined as forested only if forested areas are 
in a critical area buffer or are otherwise protected and will have a minimum 80% canopy cover within 
5 years.  In urban areas, unprotected onsite forest cover should be treated as grass in the post-
development analysis.  In rural areas, unprotected forest cover should be assumed 50% grass, 50% 
pasture. 

• The HSPF grass parameters were developed by the USGS study of regional hydrology and have 
generally been interpreted as providing the hydrologic response for "urban" grasslands (lawns, etc.), 
which have relatively low infiltration rates and are drained effectively.  The HSPF "pasture" 
parameters were developed to provide a hydrologic response intermediate to the USGS forest and 
grass parameters, as might be typified by ungrazed or lightly grazed pasture with good grass cover.  
Because it is impossible to adequately control grassland management after development, all post-
development grassland should be modeled as "grass" (with the exception of unprotected forest, 
and pasture areas on large lots, in rural development as noted above).  All predevelopment grassland 
should be modeled as "pasture" except for redevelopment of areas with predevelopment land use 
densities of 4 DU/GA or greater (which are modeled as grass). 

 CALCULATION OF IMPERVIOUS AREA 

Total Impervious Coverage 
Table 3.2.2.C (p. 3-27) lists percent impervious coverage for use in continuous runoff modeling analysis 
of existing residential areas.  The tabulated figures are useful in offsite analysis that includes large 
developed residential areas, making a detailed survey of impervious coverage impractical.  

Impervious coverage for proposed residential and commercial development must be estimated for each 
specific proposal.  Impervious coverage of streets, sidewalks, hard surface trails, etc., shall be taken from 
layouts of the proposal.  House/driveway or building coverage shall be as follows: 

• For urban residential development, the assumed impervious coverage shall not be less than 4,000 
square feet per lot or the maximum impervious coverage permitted by code (K.C.C. 21A.12.030), 
whichever is less.  

• For rural residential development, the assumed impervious coverage shall not be less than 8,000 
square feet per lot or the maximum impervious coverage permitted by code, whichever is less. 

• For commercial or multi-family development, impervious coverage shall be estimated from layouts of 
the proposal.  

Effective Impervious Area 
The net hydrologic response of an impervious area depends on whether that area is effectively connected 
(usually by pipes or a channel) to a storm drainage system.  The impervious area that the user inputs to the 
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continuous model is the "Effective Impervious Area" (EIA), the total impervious area multiplied by the 
effective impervious fraction.  See Table 3.2.2.D, p. 3-28 for effective impervious fractions that apply to 
standard impervious surfaces.  Table 1.2.9.A lists effective impervious fractions for alternative materials 
and approaches. 

Non-effective impervious area (i.e., total impervious area less EIA) is assumed to have the same 
hydrologic response as the immediately surrounding pervious area.  For example, for existing 
residential areas with rooftops draining to splash pads on lawns or landscaping, the non-effective portion 
of the roof areas would be treated as pasture for predevelopment conditions (if DU/GA < 4.0) and grass 
for post-development conditions.  Note: Credits for infiltration/dispersion of downspouts on individual 
lots in proposed single family residential subdivisions are applied separately on a site-specific basis (see 
Note 3, Table 3.2.2.D).   

The effective impervious fraction can be selected from Table 3.2.2.D or determined from detailed site 
surveys.  With the exception of figures for compacted gravel and dirt roads and parking lots, the figures in 
Table 3.2.2.D are average figures cited by the USGS (Dinicola, 1990). 

 
 

TABLE 3.2.2.C  PERCENT IMPERVIOUS COVERAGE FOR EXISTING RESIDENTIAL AREAS 

Dwelling Units/Gross 
Acre 

% Impervious(1) Dwelling Units/Gross 
Acre 

% Impervious 

1.0 DU/GA 15(2) 4.5 DU/GA 46 

1.5 DU/GA 20 5.0 DU/GA 48 

2.0 DU/GA 25 5.5 DU/GA 50 

2.5 DU/GA 30 6.0 DU/GA 52 

3.0 DU/GA 34 6.5 DU/GA 54 

3.5 DU/GA 38 7.0 DU/GA 56 

4.0 DU/GA 42 7.5 DU/GA 58 

     For PUDs, condominiums, apartments, commercial businesses, and  
industrial areas, percent impervious coverage must be computed. 

Notes: 
(1) Includes streets and sidewalks. 
(2) These figures should be adjusted by the effective impervious fraction given in Table 3.2.2.D, if 

applicable.  Values from Table 3.2.2.D may be interpolated as necessary.       
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TABLE 3.2.2.D  EFFECTIVE IMPERVIOUS FRACTION
(1)

 

Land Use Predevelopment Post-Development 

Commercial, Industrial, or Roads with Collection System 0.95   1.00(3) 

Multi-Family or High Density Single Family(2) (>4 DU/GA) 0.80   1.00(3) 

Medium Density Single Family(2) (4 DU/GA) 0.66   1.00(3) 

Low Density Single Family(2) (1 DU/GA) 0.50   1.00(3) 

Rural(2) (< 1 DU/GA) 0.40   1.00(3) 

Gravel/Dirt Roads and Parking Lots,  Roads without 
Collection System 

0.50   0.50 

Notes: 
(1) The effective impervious fraction is the fraction of actual total impervious area connected to the 

drainage system.  These figures should be used in the absence of detailed surveys or physical 
inspection (e.g., via pipe, channel, or short sheet flowpath). 

(2) Figures for residential areas include roadways. 
(3) Core Requirement 9 outlines where the use of Flow Control BMPs may be used to reduce the 

effective impervious area of the project  

 
 

Example 

Determining the land use data for an existing 20-acre residential area, with an average lot size of 9600 
square feet (4.5 DU/GA), surrounding a 5-acre forested open space tract would entail the following 
calculations: 

From Table 3.2.2.C, the portion of basin assumed impervious at 4.5 DU/GA 

Total Impervious = 0.46 x 20 acres = 9.2 acres 
Existing Pervious (grass) = 20 acres - 9.2 acres = 10.8 acres 
Existing Pervious (forest) = 5 acres 

From Table 3.2.2.D, the effective impervious area  

Effective Impervious Fraction =   0.8  (at 4.5 DU/GA) 
Effective Impervious Area = 0.8 x 9.2 acres = 7.36 acres 
Non-Effective Impervious Area = 9.2 acres - 7.36 acres = 1.84 acres 

Add the non-effective impervious area to the area of the surrounding pervious land cover. 

Total Grass Area = 10.8 acres + 1.84 acres = 12.64 acres 
Total Forest Area = 5 acres 
Effective Impervious Area = 7.36 acres 

These are the acreages that would be input into the continuous model when creating the time series. 
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3.2.2.2 TIME SERIES STATISTICAL ANALYSIS 
When using a continuous runoff model to size flow control, water quality, and conveyance facilities, 
design flows and durations must be determined through statistical analysis of time series data generated by 
the software.  Flow frequency analysis is used for determining design peak flows while flow duration 
analysis is used for determining durations of flow exceedance. 

 FLOW FREQUENCY ANALYSIS 
Flow frequency is a commonly used but often misunderstood concept.  The frequency of a given flow is 
the average return interval for flows equal to or greater than the given flow.  The flow frequency is actually 
the inverse of the probability that the flow will be equaled or exceeded in any given year (the exceedance 
probability).  For example, if the exceedance probability is 0.01, or 1 in 100, that flow is referred to as the 
100-year flow.  Assuming no underlying changes in local climate, one would expect to see about 10 peak 
annual flows equal to or greater than the 100-year flow in a 1,000-year period.  Similarly, the 2-year flow 
is the flow with a probability of 0.5, or 1 in 2, of being equaled or exceeded in any given year.  In a 100-
year period, one would expect to observe 50 peak annual flows greater than or equal to the 2-year flow.  
The number of peak annual flows actually equal to the 2-year flow may be zero, since peak annual flows 
come from a continuous spectrum. 

There are many methods for estimating exceedance probabilities and therefore flow frequencies.  The 
USGS Bulletin 17B methods are commonly used, as are graphical methods using the Gringorten, Cunane, 
or Weibull plotting schemes (Maidment, 1993).  Graphical methods for flow frequency estimation involve 
assigning exceedance probabilities, and therefore return intervals, to each annual peak in a series of annual 
peak observations, and then plotting the peak flows against their assigned return periods.  This plot is 
known as a flow-frequency curve, and it is a very useful tool for analyzing flood probabilities.  Examples 
of flow-frequency curves for a small basin under various conditions are shown in Figure 3.2.2.A (p. 3-30).  

Flow-frequency curves are used in continuous flow simulations to determine the effect of land use 
change and assess the effectiveness of detention facilities.  Using continuous methodology to design 
detention facilities to control peak flows, the analyst must match (i.e., not exceed) the post-development 
(detained) and predevelopment flow-frequency curves at the frequencies of interest, as shown in Figure 
3.2.2.A (p. 3-30), rather than match specific design events as when using an event model.   
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FIGURE 3.2.2.A  EXAMPLE FLOW FREQUENCY ANALYSIS 
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Flow frequency information is derived from the time series flow file by plotting the peak annual events in 
the runoff file and calculating runoff frequencies using a Log Pearson distribution or other statistical 
analysis.  Typical return periods calculated in continuous models are the 100-year, 50-year, 25-year, 10-
year, 5-year, 3-year, 2-year, and lesser storms for low-flow regime, LID and water quality applications. 

 FLOW DURATION ANALYSIS 
Flow duration analysis is important because it identifies the changes in durations of all high flows rather 
than simply the change in frequency of the peak annual flows.  Channel scour and bank erosion rates rise 
proportionally with increases in flow durations.  Flow duration analysis can only be conducted with 
continuous flow models or from gage records.   

A flow duration curve is a plot of flow rate against the percentage of time that the flow rate is exceeded.  
In a continuous flow model, the percent exceedance of a given flow is determined by counting the number 
of time steps during which that flow is equaled or exceeded and dividing that number by the total number 
of time steps in the simulation period.  Flow duration curves are usually plotted with a linear flow scale 
versus a log scale of percent exceedance.  The log scale for exceedance percentage is used because 
geomorphically significant flows (flows capable of moving sediment) and flows that exceed the 2-year 
flow typically occur less than one percent of the total time. 

 DURATIONS AND PEAKS FOR FLOW CONTROL STANDARDS 
The Level 2 flow control standard described in Section 3.1.2 (p. 3-5) requires matching predevelopment 
and post-development flow duration curves for all flows greater than one-half of the 2-year flow up to the 
50-year flow.  Additionally, the 2-year and 10-year peak flows are to be matched (i.e., not exceeded). 

To simplify design, brief excursions8 of post development durations above the target predevelopment 
durations are allowed for matching flows greater than 50 percent of the predevelopment 2-year.  These 
excursions shall not increase the duration of discharge by more than 10% at any flow level and must be 
strictly below the target duration curve at the low end of the range of control from 50% of the 2-year peak 
flow to the 2-year peak flow.  This allows efficient design using only two orifices for most applications, 
although two-orifice designs may not allow sizing with automatic pond sizing routines; see the software 
documentation for guidance.  An example of a flow duration analysis is shown in Figure 3.2.2.B (p. 3-32). 

The Level 3 flow control standard matches predevelopment and post-development flow durations over 
the same range of predevelopment flows and requires the same matching of the 2-year and 10-year peak 
flows as the Level 2 flow control standard.  In addition, the 100-year post-development peak flow must be 
contained within the facility and controlled to predevelopment levels.  This standard provides additional 
storage volume over the Level 2 flow control facility, which substantially mitigates the impacts of 
increased volumes of surface runoff on downstream, volume-sensitive flooding problems.  

The Level 1 flow control standard does not require flow duration analysis because it addresses peak 
flows only (the 2-year and 10-year peaks). 

The Low Impact Development (LID) performance standard requires that stormwater discharges shall 
match (i.e., not exceed) developed discharge durations to pre-developed durations for the range of pre-
developed discharge rates from 8% of the 2-year peak flow to 50% of the 2-year peak flow. No excursions 
above the pre-developed durations are allowed.   

8 Brief excursions may not result in more than 50% of the target duration curve being exceeded. 
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FIGURE 3.2.2.B  EXAMPLE FLOW DURATION ANALYSIS 
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When evaluating impacts to closed depressions, ponding areas and wetlands, or when evaluating for 
tightlined system requirements in critical areas per Core Requirement #1, frequencies of water levels or 
determination of average annual runoff volumes must be determined through statistical analysis of time 
series data generated using a continuous runoff model.  

 ASSESSING WATER LEVEL STATISTICS  
Stage frequency analysis consists of estimating and plotting recurrence estimates for water levels within a 
storage feature in the same manner as flow frequency analysis is conducted for discharges.  Stage 
frequency analysis is required for assessing runoff impacts to offsite closed depressions and ponding areas 
as required under Core Requirements 2 and 3, and as discussed Section 3.3.6, "Point of Compliance 
Analysis" (p. 3-46), or as required for analyses of wetland impacts pursuant to Core Requirement 9. 

 ASSESSING ANNUAL AVERAGE RUNOFF VOLUMES  
To compute the annual average runoff volume, the volume of runoff (surface + interflow) of a time series 
must be computed using the approved model.  The analysis is performed using the entire period of record.  
The total volume is divided by the number of full water years being analyzed to determine the annual 
average runoff volume. 
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3.2.3 THE APPROVED MODEL 
The continuous hydrologic analysis tools prescribed in this manual are generically described as the 
“approved model”;  a list of the approved models is found in Reference 6-D (as updated).  At this 
writing, the approved continuous hydrologic models9 include the Western Washington Hydrologic 
Model (WWHM) and MGS Flood, both of which are variants of the Hydrologic Simulation Program-
FORTRAN (HSPF) model.  HSPF is also an approved model, but is more complex than other approved 
models and is typically used for basin planning and master drainage plan analyses. 

General instruction and guidance for use of the approved model is found in the user’s documentation for 
the model.  Guidance specific to King County for the continuous runoff models approved for use with this 
manual is contained in Reference Section 6-D.  A brief overview of HSPF follows below. 

3.2.4 THE HSPF MODEL 
HSPF is the parent model from which the other approved model methods are built.  It is a very versatile 
continuous hydrologic/hydraulic model that allows for a complete range of hydrologic analysis.  This 
model has been extensively used in King, Snohomish, and Thurston counties and found to be an accurate 
tool for representing hydrologic conditions in this area.  The USGS has developed regional parameters to 
describe the common soil/cover combinations found in this area.  In many cases, these regional parameters 
can be used to represent rainfall/runoff relationships in lieu of site-specific calibration parameters.   

Unfortunately, the HSPF model is very difficult to use.  Design engineers using HSPF should study this 
model in detail and obtain training before using it on a project.  For these reasons, the HSPF model is 
recommended only for large and complex projects where the capabilities of the approved model are too 
limited. 

The strengths of HSPF relative to the approved model are as follows: 

1. HSPF can be calibrated to local conditions. 

2. HSPF can model, link, and route many separate subbasins. 

3. HSPF includes the groundwater component of streamflow.  

4. HSPF can address groundwater connections and perform low-flow analysis. 

5. HSPF can handle more complex hydrologic routing (e.g., evaporation, seasonal infiltration, etc.). 

The HSPF model is generally recommended for large sites where these additional features are required 
for comprehensive hydrologic and/or hydraulic analysis.  Anyone planning a project that is large enough 
to require Large Project Drainage Review and submittal of a Master Drainage Plan (MDP) per Section 
1.1.2.5 should meet with DPER MDP review staff regarding appropriate hydrologic analysis prior to 
initiating such analysis.  If a project subject to Large Project Drainage Review drains to a wetland, a 
salmonid stream with low-flow sensitivities, or a critical aquifer recharge area, it is likely that the County 
will require a calibrated HSPF model.  If such a project drains to erosion-sensitive streams or has features 
with complex hydraulics, the County may recommend or require an HSPF model using the USGS regional 
parameters.  Smaller or less sensitive subbasins within a MDP area can be analyzed with the approved 
model. 

Additional data is required to develop an HSPF model.  At a minimum, development of an HSPF 
model requires collection of onsite rainfall data for a period from seven to twelve months.  This data is 
used to determine which regional long-term rainfall record is most appropriate for modeling the site and 
for determining transposition factors for the long-term records.  If calibration is required, the onsite rainfall 
data is used.  Calibration also requires the installation of flow gages and the collection of flow data against 

9 Starting with this edition of the Surface Water Design Manual, KCRTS is not on the list of approved models.  KCRTS model 
development is no longer supported by King County and support resources are limited. 
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which simulated flows can be compared.  HSPF analysis is based on simulations with long-term rainfall 
records (greater than 30 years).  Long-term precipitation records in HSPF format can be obtained from the 
County for the Sea-Tac, Landsburg, and Carnation gages. 

Land surface representation with HSPF follows the same procedures and classification as used with the 
approved model. 

Conceptually, the outputs required from an HSPF analysis are consistent with those required from an 
approved model analysis, including frequency and durational analysis.  Flow and/or water level 
frequencies shall be estimated using the full set of annual peaks from the long-term simulations using the 
USGS Bulletin 17B methods as well as the Gringorten or Cunane graphical methods.  Durational analyses 
can be produced from the HSPF model and the results presented graphically.  If a wetland is modeled, 
water level analyses may be required.  Monthly, seasonal, and annual water balance and flow information, 
if appropriate, can be calculated with the HSPF model. 
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3.3 HYDROLOGIC DESIGN PROCEDURES AND 
CONSIDERATIONS 

This section presents the design procedures and considerations for sizing flow control facilities to meet the 
required hydrologic performance specified in Core Requirement #3, Section 1.2.3.  It includes the 
following procedures and special considerations for proper hydrologic design:  

• "General Hydrologic Design Process," Section 3.3.1 

• "Flow Control Design Using the Runoff Files Method," Section 3.3.2 (p. 3-39)  

• "Conveyance System Design with the Runoff Files Method," Section 3.3.3 (p. 3-41)  

• "Safety Factors in Hydrologic Design," Section 3.3.4 (p. 3-41)  

• "Design Options for Addressing Downstream Drainage Problems," Section 3.3.5 (p. 3-43)  

• "Point of Compliance Analysis," Section 3.3.6 (p. 3-46)  

• "Onsite Closed Depressions and Ponding Areas," Section 3.3.7 (p. 3-49). 

3.3.1 GENERAL HYDROLOGIC DESIGN PROCESS 
This section presents the general process involved in conducting a hydrologic analysis using the runoff 
computation and analysis tools described in Section 3.2 to design flow control facilities for a project.  The 
process is described as follows: 

1. Review the core and special requirements in Chapter 1 to determine all requirements that will apply 
to the proposed project. 

a) Determine the applicable flow control standard (outflow performance criteria and land cover 
assumptions). 

b) If downstream drainage problems are identified through offsite analysis per Core Requirement #2, 
determine if they will necessitate additional onsite flow control or other measures as described in 
Section 3.3.5 (p. 3-43).  

2. Determine and demonstrate in the Technical Information Report (see Section 2.3) the predeveloped 
conditions per Core Requirement #3, Flow Control (see Section 1.2.3). 

3. Identify and delineate the drainage basin for each natural discharge location from the project site. 

a) Identify existing drainage features such as streams, conveyance systems, detention facilities, 
ponding areas, depressions, wetlands, etc. 

b) Identify existing land uses. 

c) Identify soil types using SCS soil survey or onsite evaluation. 

d) Convert SCS soil types to soil classifications for the approved model. 

4. Select and delineate appropriate subbasins, including subbasins tributary to major drainage features 
and important conveyance points, and subbasins for separate computation of onsite flows and offsite 
flows. 

5. Determine hydrologic parameters for each subbasin under predeveloped conditions. 

a) Categorize soil types and land cover.  

b) Determine total impervious areas and effective impervious areas within each subbasin. 

c) Determine areas for each soil/cover type in each subbasin. 
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6. Determine the runoff time series for predeveloped conditions at each natural discharge location. 

a) Compute the predeveloped condition runoff time series for each subbasin using 15-minute time 
steps. 

b) For subbasins that drain to a drainage feature with significant detention storage (e.g., 
existing detention facilities, ponding areas, closed depressions), route the runoff time series 
through the feature per the storage routing methods in the approved model.  This will yield an 
attenuated flow series, which becomes the effective runoff time series for that subbasin. 

c) Sum the appropriate subbasin runoff time series to obtain the total runoff time series for each 
natural discharge location. 

d) Determine the 100-year peak flow for each natural discharge location. 

7. Repeat Steps 4 through 6 for the proposed post-development condition. 

8. Compare the 100-year peak flows for the appropriate predeveloped and post-development conditions 
at each natural discharge location.   

a) Check the "Discharge Requirements" criteria in Core Requirement #1 to determine the 
acceptable manner of discharge from the project site (using existing conditions). 

b) Check the flow control exemptions in Core Requirement #3 to determine if a flow control 
facility is required (using existing site or historic site conditions, as specified in Core 
Requirement #3). 

c) Check the requirement for bypass of runoff from non-target surfaces in Core Requirement #3 
to determine if runoff from non-target surfaces must be conveyed around onsite flow control 
facilities (using existing conditions). 

9. If flow control facilities are required, determine their location and make any necessary adjustments to 
the developed condition subbasins. 

10. Design and size each flow control facility using the methods described in Section 3.2 and the Runoff 
Files Method design procedure in Section 3.3.2.  

a) Analyze the appropriate predeveloped condition runoff time series to determine target release 
rates for the proposed facility.  Note: If the target release rates are zero, an infiltration facility 
will be required. 

b) Compute the post-development runoff time series for the proposed facility. 

c) Use the post-development runoff time series and an iterative process to size the facility to meet 
the required level of performance set forth in Core Requirement #3.  See the approved model 
user’s documentation for procedures in sizing flow control facilities using continuous flow time 
series. 

11. Design required onsite conveyance systems using the appropriate runoff computation method (either 
the Rational method or the Runoff Files method with 15-minute time steps) as specified in Section 3.2 
(p. 3-11). 
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3.3.2 FLOW CONTROL DESIGN USING THE RUNOFF FILES METHOD 
Flow control facility design using the approved modeling software involves four basic steps: 

1. Determining the statistical characteristics (peaks or durations) of predevelopment flows (using 15-
minute time steps) which set the targets for the facility release rates, 

2. Developing preliminary facility volume and orifice configuration, 

3. Routing post-development flow time series through the preliminary facility to check performance, and 

4. Iteratively revising the facility and checking performance until the target flow conditions are achieved.   

Instead of using individual design rainfall events as in an event model, the design of the facility is based 
on simulation of the facility's performance using the full historic (over 50-years) time series record of 
simulated post-development flows, and also on comparison of the outflow record to characteristics of the 
predevelopment flow record.  Final design is achieved when the outflow time series meets the target flow 
specifications. 

Detention facility design with a continuous model is based on aggregate flow statistics, not upon 
individual storms.  When designing detention facilities with a continuous model, the return period of the 
peak flow leaving the facility for a particular event may not have the same return period as the peak flow 
entering the facility during the same event.  Unlike event models, continuous models have natural 
variability in the ratio of storm peak and volume.  This lack of correspondence in the return periods of 
peak inflows and outflows in continuous models means that facility design using  a continuous runoff 
model is more complicated than with an event method and in general has to be done on an iterative trial-
and-error basis to obtain an optimal (i.e., least volume) design.   

The effect of detention facilities in controlling peak flows is dependent on both the volume and peak of the 
inflowing hydrograph.  Generally, it is high volume storms rather than high intensity storms that cause 
detention facilities to fill and overtop.  The hydrographs produced by a continuous runoff model show 
considerable variability in the relationships between peak flows and storm volumes.  For example, one 
event produced by high rainfall intensities in a relatively short duration storm may produce high peak 
flows with a relatively small hydrograph volume.  By contrast, a second rainfall event may have relatively 
low intensities but long duration, producing a runoff hydrograph with large volumes and relatively small 
peak.  Due to this natural variability, the peak annual outflows from a detention facility may not 
correspond in time to the annual peaks of the inflow record. 

Similarly, the predevelopment peak annual flows may not occur during the same storm as the peak annual 
flows for the post-development flow series.  This is because the types of storms that produce high flows 
from undeveloped land covers are different from those that produce high flows from impervious surfaces.  
Forests generate high streamflows in response to long-duration, high-volume rainfall events that soak the 
soil profile, whereas impervious surfaces produce the highest flow rates in response to high precipitation 
intensity.  This is another reason why detention facility design with a continuous runoff model is based on 
aggregate flow statistics, not upon individual storm hydrographs. 

The following is a typical procedure for hydrologic design of detention/infiltration facilities using a 
continuous runoff model.  Specific guidance for conducting hydrologic analysis and design with the 
approved model is provided in the approved model user’s documentation. 

1. Create time series of flows from the predevelopment area using graphic elements that detail the 
predevelopment land cover, the post-development area tributary to the facility, any onsite post-
development bypass area, and any offsite flow-through areas. 

2. Add any offsite flow-through time series to the predevelopment flow time series using similar 
graphic elements to produce a time series of total predevelopment outflows from the project site.  
Similarly, add the same offsite flow-through time series to the time series of post-development flows 
tributary to the facility to produce a time series of total post-development inflows to the facility. 
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3. Generate peak annual flow estimates, flow duration curves and flow frequency curves for pre- 
and post-development time series.   

4. Enter the Facility element for the scenario and specify initial facility specifications for the type of 
facility proposed.  Use of two orifices is usually sufficient for most designs.  If designing an 
infiltration facility, the bottom orifice may be elevated or zero orifices may be specified.   

5. Route the complete facility inflow time series through the facility.  The outflow time series is 
automatically saved.   Use the analysis tools to evaluate facility performance.  When sizing the 
facility to account for credits from flow control BMPs per Core Requirement 9 and Appendix C, 
note that it is necessary to turn infiltration off for on-line flow control BMPs draining to the 
facility, to avoid counting the flow reduction effect twice.  For facilities designed using this 
manual, explicit modeling of infiltrative BMPs for downstream flow control facility sizing is not 
allowed. 

6. Adjust orifice configuration and facility size, iterate until desired performance is achieved.  Use 
of the automatic facility sizing routine in the approved model is helpful. 

7. Verify the facility performance by routing the complete time series of inflows and checking the 
post-development peak flows and/or durations at the project site boundary against the target flows 
and/or durations (see the criteria for "Evaluating Flow Control Performance" provided below).  When 
explicitly modeling BMPs for compliance with the LID Performance standard, two separate routings 
are necessary to evaluate the flow control credit based facility performance and the explicitly 
modeled BMPs for the LID Performance standard. 

Evaluating Flow Control Performance 
Evaluating the performance of facility designs intended to provide flow frequency control is 
comparatively straightforward: the post-development facility annual peak flows should be strictly less than 
or equal to predevelopment annual peak flows at each of the specified return periods. 

Note: Peak flow matching is required per Core Requirement #3  The automatic sizing routines in the 
approved continuous runoff models are based on duration matching and do not evaluate for peak flow 
compliance.  The user must complete this evaluation as an additional step to verify compliance.  

Evaluating the design performance of detention facilities providing flow duration control, however, 
generally requires several iterations.  In fact, considerable time could be spent attempting to match 
predevelopment and post-development duration curves.  Some flexibility in assessing the adequacy of fit is 
clearly needed to expedite both design and review.  Therefore, flow duration designs will be accepted as 
meeting performance standards when the following conditions are met: 

1. The post-development flow duration curve lies strictly on or below the predevelopment curve at the 
lower limit of the range of flow control (between 50% of the 2-year and the 2-year)10.  

2. At any flow value within the upper range of flow control (from the 2-year to the 50-year), the post-
development duration of the flow is no more than 1.1 times the predevelopment flow duration. 

3. The target duration curve may not be exceeded along more than 50% of the range of control. 

4. Where a facility or BMP is used to meet the LID Performance Standard, the post-development flow 
duration curve lies strictly on or below the predevelopment curve for the range of pre-developed 
discharge rates for the LID Performance standard (from 8% of the 2-year peak flow to 50% of the 
2-year peak flow)11. 

 

10 For small projects, the lower limit of the range of control for Levels 1 through 3 (see Section 3.1.2) is considered met with a 
minimum diameter (0.25 inches) lower orifice in a low head facility (maximum effective storage depth of 3 feet) where full 
duration control cannot be achieved at the lower limit.  Predeveloped flow durations, within allowed tolerances, must be met for 
all flows above the best achievable lower limit.  The LID Performance standard must also be met; performance results could 
be influenced by the minimum diameter. 

11 See Core Requirement 9 and Appendix C for application of pre-sized flow control BMPs for mitigating the LID Performance 
standard in lieu of explicit modeling 
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3.3.3 CONVEYANCE SYSTEM DESIGN WITH THE RUNOFF FILES 
METHOD 

This section provides guidance for use of the Runoff Files method in determining peak flows for the 
design and analysis of conveyance elements, overflow structures, and other peak flow sensitive drainage 
features.   

Rainfall events that create the highest rates of runoff from developed areas are typically shorter in duration 
and are characterized by brief periods of high intensity rainfall.  To simulate the runoff from higher 
intensity, shorter duration rainfall events, a 15-minute time series is used.  

The following is the typical procedure for hydrologic design and analysis of conveyance facilities using 
the Runoff Files method:  

1. Select and delineate appropriate subbasins. 

a) Select separate subbasins for major drainage features and important conveyance points. 
b) Identify existing land covers offsite and post-development land covers onsite. 
c) Identify soil types by using the SCS soil survey or by directly evaluating the site. 
d) Convert SCS soil types to the approved model soil classifications. 

2. Determine hydrologic parameters for each subbasin. 

a) Within the approved model, locate the project to determine appropriate rainfall region and/or 
regional scale factor.  

b) Categorize soil types and land cover per Table 3.2.2.A (p. 3-24) and Table 3.2.2.B (p. 3-25). 
c) Determine total impervious areas and effective impervious areas within each subbasin. 
d) Determine areas for each soil/cover type in each subbasin. 

3. Determine peak flows for the conveyance element being analyzed. 

a) Following the approved model guidance, assemble the post-development scenario including an 
element for each subbasin and using 15-minute time steps.  

b) Set the point of compliance at the confluence of the post-developed subbasins being routed to the 
conveyance element.  Run the scenario for the developed subbasins and conduct a flow 
frequency analysis on the results of the scenario run.  From this analysis the 10-year, 25-year, 
and 100-year peak flows can be determined.  These design flows can then be used to size or 
assess the capacity of pipe systems, culverts, channels, spillways, and overflow structures. 

3.3.4 SAFETY FACTORS IN HYDROLOGIC DESIGN 
It is often appropriate to apply safety factors to detention volumes or conveyance design flows.  This 
manual does not require safety factors for detention or conveyance design, but it does recommend the use 
of safety factors when the designer believes the results of the approved model are not sufficiently 
conservative given local conditions.  The approved model methodology does not include inherent safety 
factors as it is meant to account for "average" conditions.  On a particular site, the approved model may 
overestimate or underestimate flow rates and detention volumes. 

Within any soil/cover group, there is a range of hydrologic response dependent on local soil and geologic 
conditions for which the approved model methodology does not account.  The USGS regional parameters 
for HSPF that were used to create the runoff files produce "average" runoff time series that overestimate 
peak flows in some basins and underestimate them in others.  Similarly, the detention volumes designed 
with the approved model for a given conversion type are in the middle of the range of volumes that would 
be created if exact local hydrologic conditions were known for every project of that type.  Therefore, some 
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of the detention facilities designed with the approved model are oversized and some are undersized, 
depending on variable site conditions. 

Because of the uncertainty in local hydrologic response, King County recommends, but does not require, 
that a volume safety factor of 10% be applied to all detention facilities.  If downstream resources are 
especially sensitive, or if the designer believes that the approved model significantly overestimates 
predevelopment flows or underestimates post-development flows, a volume safety factor of up to 20% 
may be appropriate.  If a volume safety factor is applied to a detention facility, the volume should be 
increased by the given percentage at each one-foot stage increment.  Safety factors for conveyance systems 
should be evaluated with respect to the potential damages and costs of failures due to backwatering, 
overtopping, etc.  Applications of safety factors fall strictly within a professional engineer's judgment and 
accountability for design.  Section 4 of the Technical Information Report should state what safety factor 
was applied to the design of the flow control facility.     
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3.3.5 DESIGN OPTIONS FOR ADDRESSING 
DOWNSTREAM DRAINAGE PROBLEMS 

This section explains the rationale behind the problem-specific mitigation criteria summarized in Chapter 
1, Table 1.2.3.A, and it presents acceptable options for addressing the three primary types of downstream 
drainage problems defined in Core Requirement #2. 

1. Conveyance system nuisance problems 

2. Severe erosion problems 

3. Severe flooding problems. 

If one or more of these problems is identified through offsite analysis per Core Requirement #2, the 
applicant must demonstrate that the proposed project will not create or significantly aggravate the 
problem.  This may require additional analysis, onsite flow control, and/or offsite improvements sufficient 
to ensure no aggravation of these problems.  To reduce the need for extra analysis and to aid in the 
selection of measures to prevent aggravation, a set of options corresponding to each of the three types of 
downstream drainage problems is explained in this section.  Each option details the extent to which 
additional measures are needed to prevent aggravation based on the flow control standard being applied to 
the project site.   

 OPTIONS FOR ADDRESSING CONVEYANCE SYSTEM NUISANCE PROBLEMS 
Problem Description: Overflow from a downstream conveyance system has or is predicted to cause 
nuisance flooding/erosion of a yard, a pasture, or one side of a roadway for runoff events less than or equal 
to the 10-year event.   

The two options detailed below are acceptable measures for preventing the creation or aggravation of this 
problem.  A combination of these two options may also be used if demonstrated to meet the same 
performance goals.  Other options may be possible through a more rigorous design procedure using the 
point of compliance analysis technique described in Section 3.3.6 (p. 3-46). 

The extent of additional onsite flow control or offsite improvements needed depends on the minimum 
area-specific flow control standard already being applied to the proposed project per Section 1.2.3.1. 

Option 1—Additional Onsite Flow Control 
• If Level 1 is the area-specific flow control standard per Section 1.2.3.1, then expand its 

performance criteria of matching the post-development discharge rate for the 10-year return period to 
the existing site conditions discharge rate for the return period Tr at which the conveyance system 
overflows.  Note: Determining Tr requires a minimum Level 2 downstream analysis as detailed in 
Chapter 2.  To avoid this analysis, a Tr of 2 years may be assumed. 

Intent: This criteria is intended to prevent creation or aggravation of the problem for runoff events 
less than or equal to the 10-year event by eliminating the project site's contribution to conveyance 
system overflows during these events. 

• If the Level 2 or Level 3 flow control standard is being applied onsite, no additional flow control is 
needed.  The duration-matching criteria of these standards already prevent aggravating increases in 
overflow volume by maintaining, or in some cases reducing, the discharge volumes of existing site 
conditions for peak flows greater than 50% of the 2-year peak flow. 
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Option 2—Offsite Improvements 
• If the Level 1 flow control standard is being applied onsite, then make improvements to the existing 

conveyance system per Core Requirement #4 (see Section 1.2.4). 

• If the Level 2 or Level 3 flow control standard is being applied onsite, no offsite improvements are 
necessary. 

 OPTIONS FOR ADDRESSING SEVERE EROSION PROBLEMS 
Problem Description: A downstream channel, ravine, or slope area has or is predicted to experience 
severe erosion and/or incision that poses a sedimentation hazard to downstream conveyance systems or 
poses a landslide hazard by undercutting a steep slope.   

The two options detailed below are considered acceptable measures for preventing aggravation of this 
problem. 

The extent of additional onsite flow control or offsite improvements needed depends on the minimum 
area-specific flow control standard already being applied to the proposed project per Section 1.2.3.1. 

Option 1—Additional Onsite Flow Control 
• If Level 1 is the area-specific flow control standard, then apply Level 2 instead, assuming existing 

site conditions as the predevelopment condition per Section 1.2.3.1.  This standard prevents the 
occurrence of aggravating increases in the durations of flow exceedance that contribute to erosion. 

• If the Level 2 or Level 3 flow control standard is being applied onsite, no additional flow control is 
needed.  The duration-matching criteria of these standards prevent the occurrence of aggravating 
increases in the durations of flow exceedance that contribute to erosion. 

Note: If the proposed project's discharge is such that previously unconcentrated flows will be 
concentrated onto a highly erodible area, DPER may require a tightline system through the area 
regardless of the level of onsite flow control being provided.  This should be addressed with DPER in a 
predesign meeting. 

Option 2—Offsite Improvements 
• If the Level 1 flow control standard is being applied onsite, then make tightline, channel armoring, 

or bioengineered improvements to safely convey discharge from the project site through the severely 
eroded area. 

• If Level 2 is the required area-specific flow control standard, offsite tightline or channel armoring 
improvements may, in some cases, be used to reduce this standard if those improvements drain by 
non-erodible manmade conveyance to a major receiving water listed in Section 1.2.3.1.  In some 
cases, DPER may require a tightline if the risk of damage is high. 

• If Level 3 is the required area-specific flow control standard, offsite tightline or channel armoring 
improvements may, in some cases, be required by DPER where the risk of damage is high. 

 OPTIONS FOR ADDRESSING SEVERE FLOODING PROBLEMS 
Problem Description: Overflow from a downstream conveyance system, or the elevated water surface of 
a downstream pond, lake, wetland, or closed depression, has or is predicted to cause a severe building 
flooding problem or a severe roadway flooding problem.  Such problems, by definition, occur during 
runoff events less than or equal to the 100-year event.  See Section 1.2.2.1 for a more detailed description 
of severe building and roadway flooding problems. 

The two options detailed below are acceptable measures for preventing the creation or significant 
aggravation of this problem.  A combination of these two options may also be used if demonstrated to 
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meet the same performance goals.  Other options may be possible through a more rigorous design 
procedure using the point of compliance analysis technique described in Section 3.3.6 (p. 3-46). 

The extent of additional onsite flow control or offsite improvements needed depends on the minimum 
area-specific flow control standard already being applied to the proposed project per Section 1.2.3.1. 

Option 1—Additional Onsite Flow Control 
• If Level 1 is the area-specific flow control standard, then apply Level 3 instead, assuming existing 

site conditions as the predevelopment condition AND comply with the special provision for closed 
depressions stated below, if applicable.  Also, if the problem is caused by conveyance system 
overflows, the duration-matching criteria of Level 3 may be modified to match post-development 
discharge durations to predevelopment discharge durations for the range of predevelopment discharge 
rates between that which corresponds to the return period Tr of conveyance system overflow and the 
50-year peak flow, assuming existing site conditions for the predevelopment condition.  Note: 
Determining Tr requires a minimum Level 2 downstream analysis as detailed in Chapter 2.  To avoid 
this analysis, a Tr of 2 years may be assumed. 

Intent:  The intent behind Level 3 flow control is described in Section 1.2.3.1.  The modified version 
of Level 3 is intended to prevent the occurrence of aggravating increases in overflow volume, 
duration, and peak flow for runoff events less than or equal to the 100-year event. 

• If Level 2 is the area-specific flow control standard (i.e., the project is within a Conservation Flow 
Control Area), then apply Level 3 instead, assuming historic site conditions as the predevelopment 
condition AND comply with the special provision for closed depressions stated below, if applicable. 

• If Level 3 is the area-specific flow control standard, then comply with the special provision for 
closed depressions stated below, if applicable. 

Special Provision for Closed Depressions 
If the amount of impervious surface area proposed by the project is greater than or equal to 10% of the 
100-year water surface area of the closed depression, then use the point of compliance analysis 
technique described in Section 3.3.6 (p. 3-46) to verify that water surface levels are not increasing for 
the return frequencies at which flooding occurs, up to and including the 100-year frequency.  If 
necessary, iteratively adjust onsite flow control performance to prevent increases. 

Intent: This provision is intended to be applied to those developments that are large enough to have a 
significant impact on the water surface levels of a closed depression.  For such developments, the 
provision is intended to more closely examine the hydrologic characteristics of the depression to 
ensure no significant aggravation of the flooding problem.  Characteristics such as the infiltration rate 
or the influence of groundwater fluctuations can be highly variable and difficult to measure, which 
may entail wet season monitoring for proper analysis. 

Option 2—Offsite Improvements 
• If the Level 1 or Level 2 flow control standard is being applied onsite and the problem is caused by 

conveyance system overflows, then make improvements to the existing conveyance system sufficient 
to prevent the severe flooding problem.  If the problem is caused by the elevated water surface of a 
pond, lake, wetland, or closed depression, then make improvements to the live storage volume or 
discharge characteristics of the water body in question such that water surface levels for the 
frequencies at which flooding occurs are not increased, OR make improvements to elevate the 
flooding building or roadway above the 100-year water surface. 

• If the Level 3 flow control standard is being applied onsite and the special provision for closed 
depressions is applicable, then make improvements as described above for the Level 1 and Level 2 
flow control standards.  Otherwise, offsite improvements are not required. 

 
2016 Surface Water Design Manual 4/24/2016 

3-45 



SECTION 3.3 HYDROLOGIC DESIGN PROCEDURES AND CONSIDERATIONS 
 

3.3.6 POINT OF COMPLIANCE ANALYSIS 
The point of compliance is the location where flow control performance standards are evaluated.  In most 
cases, the point of compliance is the outlet of a proposed detention facility where, for example, 2- and 10-
year discharges must match predevelopment 2- and 10-year peak flow rates. 

The point of compliance for hydrologic control moves downstream of the detention facility outlet or the 
property boundary under the following circumstances:  

1. The proposed project discharges to an offsite closed depression with a severe flooding problem per 
Section 1.2.2, and the project adds impervious surface greater than or equal to 10% of the 100-year 
water surface area of the closed depression (see Table 1.2.3.A).  In these cases, the closed depression 
becomes the point of compliance, and the engineer must ensure that project site runoff does not 
aggravate the flooding problem (or create a new flooding problem).    

2. The proposed project includes an onsite runoff bypass, a small developed area that bypasses the flow 
control facility (see Section 1.2.3.2).  In such cases, runoff from the remainder of the project site is 
overdetained so that the sum of the detained and undetained flows meets the required flow control 
performance standard.  The point of compliance for such projects is where the onsite bypass flows 
join the detained flows.   

3. The proposed project bypasses offsite flows around an onsite closed depression, ponding area, or 
wetland (see Section 3.3.7, p. 3-49).  As with onsite bypasses, the point of compliance in this case is 
where detained flows converge with the bypassed flows. 

The approved model allows multiple points of compliance for evaluating runoff performance within a 
scenario.  The automatic facility sizing routine in the approved model requires a point of compliance to 
size an individual facility; a separate point of compliance is required for downstream evaluation.  See the 
approved model user’s documentation for modeling application of points of compliance to meet the 
requirements of this manual. 

Note: When controlling flow durations at a downstream point of compliance to demonstrate no adverse 
impact, the 10% tolerance specified for Level 2 performance (p. 3-31) may not be used.  Predevelopment 
condition flow durations should be matched to the extent feasible for all flows above the level of concern.  
The resultant facility should also be checked to verify that the minimum onsite performance standard (e.g., 
Level 1, Level 2, or Level 3 per Section 1.2.3.1) has also been met. 

 OFFSITE CLOSED DEPRESSIONS 
If a project drains to an offsite closed depression with existing or potential flooding problems, then the 
water surface levels of the closed depression must not be allowed to increase for return frequencies at 
which flooding occurs, up to and including the 100-year frequency.  This section describes the point of 
compliance analysis necessary to size detention facilities discharging to such a closed depression.  If the 
closed depression is classified as a wetland, other requirements apply per Section 1.2.2, Core 
Requirement #2. 

The closed depression is first modeled (using the site's predevelopment condition) to determine the return 
frequency at which flooding currently occurs and the water levels associated with return frequencies in 
excess of this frequency.  These flooding levels and their probabilities dictate the detention performance 
for the proposed development.  The proposed detention facility is then iteratively sized such that discharge 
from the site's post-development condition does not increase water surface levels for the frequencies at 
which flooding occurs—that is, after development, water level frequency curves must match for all 
frequencies equal to or greater than the frequency at which flooding occurs (up to the 100-year water 
level). 

The infiltration rate must be determined in order to accurately model the closed depression.  In the case of 
a closed depression with an existing flooding problem, the infiltration rate is most realistically depicted by 
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calibrating the model to known flooding events.  This should be done using the full historical runoff files 
and setting the closed depression outflow (infiltration) such that recorded or anecdotal levels of flooding 
occur during the same storm events in the historical record.   

Where a flooding problem might be created by discharge of post-development flows to a closed 
depression, and in the absence of information on dates and water surface levels in the closed depression 
during past runoff events, infiltration rates must be determined through testing as follows:  

• For a closed depression without standing water, two or more test pits should be dug in the bottom of 
the closed depression to a depth of 10 feet or to the water table, whichever is reached first.  The test 
pits shall be dug under the supervision of a geotechnical engineer, and a test pit log shall be kept.  
Evidence of high water table shall be noted. 

• If the test pit reveals deep homogeneous permeable material with no evidence of a high water table, 
then infiltration tests shall be performed in the bottom of the closed depression at locations of similar 
elevation and on opposite sides of the bottom area (as feasible).  Surface infiltration rates shall be 
determined using the methods for assessing measured infiltration rates included in Section 5.2.  The 
measured rates should be used directly, without applying correction factors.   

• If the closed depression has standing water or is a SAO-defined wetland, or if test pits show evidence 
of a high water table or underlying impermeable material, then procedures for determining infiltration 
rates will be established on a case-by-case basis in coordination with DPER geologists.   

• In the event that a closed depression with a documented severe flooding problem is located on private 
property and all reasonable attempts to gain access to the closed depression have been denied, the 
Level 3 flow control standard shall be applied with a 20% factor of safety on the storage volume.  

 ONSITE RUNOFF BYPASS 
It is sometimes impractical to collect and detain runoff from an entire project area, so provisions are made 
to allow undetained discharge from onsite bypass areas (see Section 1.2.3.2) while overdetaining the 
remainder of the runoff to compensate for unmitigated flows.  A schematic of an onsite runoff bypass is 
shown in Figure 3.3.6.A (next page). 
 

For projects employing onsite runoff bypass, flow control performance standards are evaluated at the point 
of compliance, the point where detained and undetained flows from the project site are combined. 

Point of Compliance Analysis for Onsite Bypass Areas 
1. In the approved model, create a predeveloped condition element for the entire project area including 

the predevelopment detained area and the predevelopment bypass area.  Route the scenario and apply 
the analysis tools to determine flow targets (either flow frequencies or durations, depending on the 
applicable design standard) from the predeveloped condition runoff time series.  

2. Create and route separate developed condition elements for the detained area and the bypass area, 
producing a separate time series for each area. 

3. Ensure that the flow characteristics of the developed runoff element for the bypass area do not exceed 
the targets determined in Step 1 or the 0.4 cfs threshold in Core Requirement #3.  If the bypass area 
flows exceed the targets or threshold, then the bypass is not feasible. 

4. Estimate allowable release rates from the detention facility for each return period of interest with the 
following equation: 

  Allowable release = (Total Project Area Flow)predeveloped cond.. – (Bypass Area Flow)developed cond. 

 Note: WWHM 2012 and later supports the direct sizing of onsite detention facilities based on the results at 
a downstream point-of-compliance.  See the WWHM user’s documentation for further details. 

5. Develop a preliminary design of the flow control facility based on the estimated release rate(s). 
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6. Route post-development flows from the detained area through the detention facility to create a 
detention facility outflow time series. Provide a downstream point of compliance and route the bypass 
area and the facility outflow to the downstream POC. 

7. The approved model determines the total project post-development outflow by adding the detention 
facility outflow runoff time series to the post-development runoff time series from the bypass area at 
the downstream point of compliance.  Check characteristics of the total project post-development 
outflow against the targets determined in Step 1. 

8. If compliance is not achieved (e.g., 2- and 10-year post-development flows exceed 2- and 10-year 
predevelopment flows), revise the facility design (or revise the project design to reduce the bypass 
area) and repeat Steps 6 through 8.   

 For WWHM 2012 and later, Steps 6 through 8 have been automated for facility sizing by using the point 
of compliance option in the facility element of the model.  See the WWHM user’s documentation for 
guidance. 
 

FIGURE 3.3.6.A  SCHEMATIC OF AN ONSITE RUNOFF BYPASS 
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3.3.7 ONSITE CLOSED DEPRESSIONS AND PONDING AREAS 
Onsite closed depressions, ponding areas, and wetlands require special consideration when determining 
detention performance targets; if altered, they can shift the point of compliance downstream.  However, 
the critical areas code (KCC 21A.24) regulates wetlands (note that most closed depressions and ponding 
areas are wetlands by definition) and generally does not permit alteration through either filling or gross 
hydrologic changes such as bypassing offsite flows.  Note: Post-development discharges to offsite closed 
depressions, ponding areas, or wetlands (with the exception of those in Flood Problem Flow Control 
Areas per the Flow Control Applications Map or those discussed in Section 3.3.6) are normally not 
required to meet special performance standards unless there is a severe flooding problem as defined in 
Section 1.2.2.  

 GENERAL REQUIREMENTS 
The following general requirements apply to onsite closed depressions, ponding areas, and wetlands 
(referred to below as "features"): 

1. Flow attenuation provided by onsite wetlands and ponding areas, and storage provided by onsite 
closed depressions must be accounted for when computing both existing onsite and offsite flows.  

• Existing onsite flows must be routed through onsite wetlands and ponding areas to provide 
accurate target release rates for the developed site.  Note: Closed depressions will have no outflow 
for some portions of the site for some events, although overflow may occur during extreme events. 

• Existing offsite flows will increase at the project boundary if the feature is filled or if the offsite 
flows are bypassed around the feature.  To compensate, post-development onsite flows must be 
overdetained, and the point of compliance will shift downstream to where the detained flows 
converge with the bypassed offsite flows.  

2. If the onsite feature is used for detention, the 100-year floodplain must be delineated considering 
developed onsite and existing offsite flows to the feature.  Note: Additional storage volume may be 
necessary within the feature, and the point of compliance is the discharge point from the feature. 

3. If the detention facility for the proposed project discharges to an onsite wetland, ponding area, 
or closed depression that is not altered12 by the proposed project, AND Level 2 or Level 3 flow 
control is provided, the point of compliance is the discharge point of the detention facility, not the 
outlet of the onsite feature.  If Level 1 flow control is being provided, the point of compliance is the 
outlet of the onsite feature. 

 FLOODPLAIN DELINEATION FOR LAKES, WETLANDS, CLOSED DEPRESSIONS, AND 
PONDING AREAS 
A minor floodplain analysis is required for onsite or adjacent lakes, wetlands, and closed depressions that 
do not have an approved floodplain or flood hazard study (see Section 4.4.2; note the exceptions).  Minor 
floodplain studies establish an assumed base flood elevation below which development is not allowed. 

The following are guidelines for minor floodplain analysis of volume sensitive water bodies: 

1. Create time series representing tributary flows to the feature from the entire tributary area.  Where 
the feature is contained entirely onsite and where no offsite flows exist, use the tributary area for the 
proposed developed condition. 

2. Where the feature is only partially onsite, or where there are offsite flows to the feature, assume the 
entire tributary area is fully built out under current zoning, accounting for required open space 
and protected critical areas in the basin as well as impervious surfaces and grass. 

12  Not altered means existing on- and offsite flows to the feature will remain unchanged and the feature will not be excavated or 
filled. 
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3. For potential future development, assume detention standards per Section 1.2.3.1.  For 
simplicity the proposed detention may be simulated with a single assumed detention pond just 
upstream of the feature.  This pond should be sized to the appropriate detention standard and 
predevelopment condition assumption as noted in Section 1.2.3.1 and will require generating a 
predevelopment time series for the basin.  Large water bodies may provide significant floodwater 
storage and may also be included in the analysis.  Most existing detention in the basin, with exception 
of that providing duration control, will have little effect on the analysis and should be discounted. 

4. Sum all subbasin time series to create a single composite time series for the drainage feature.  

5. Develop routing curves for the feature.  As appropriate, consider infiltration as an outflow for closed 
depressions. 

6. Route the time series through the storage feature, generate water surface frequency curves, and note 
the 100-year water surface elevation. 
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