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The answer is…



So what was the question?

Can we develop a valid and defensible 
stream flow index using Normative Flow 
concepts?

Adapted from King County Normative Flow Studies web page – bullet one 
http://dnr.metrokc.gov/wlr/BASINS/flows/



What is “Normative Flow”

• Not an attempt to return the landscape to 
pre-European conditions

However…

historic conditions give us clues to flow 
regime that native biota were adapted to



Focus and Philosophy

• Small 2nd to 4th order Puget Sound 
Lowland streams

• Connect hydrology to biological responses
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Challenges

• Direct observations of the pre-disturbance  
flow regime are generally unavailable

• Co-located hydrological and biological (or 
chemical) observations are rare

• Few “reference” streams available
• Covariation of land development and 

natural landscape features
• How to incorporate climate variability?
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Hydrologic Index Requirements

• Correlated with biological metrics (B-IBI)
• Can be calculated annually
• Component metrics chosen to minimize 

redundancy
• Demonstrated trend with time (low interannual variability)

• Correlated with land cover metrics
• Relatively unaffected by basin 

area/elevation/precipitation totals



Hydrologic Index Assumptions

• Biological response occurs over multi-year 
time scales

• Biota will respond to “normative flow”
restoration (reversibility)

• A “Normative” hydrologic index will require 
the use of models to estimate the historical 
flow regime
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Hydrologic Metrics
• Magnitude

– 7-day average annual minimum flow
• Duration

– Low and high flow pulse duration
– Low and high flow pulse range
– Percent of time above 2-year baseline flow
– Fraction of year mean annual flow exceeded (TQmean)

• Frequency
– Flow reversals
– Low and high flow pulse counts
– Fall and rise counts

• Timing
– Date of annual daily minimum flow
– Date of onset of fall flows

• Rate of Change
– Rise and fall rates                                             

• Qmax:Qmean

• R-B Index



Hydrologic Metric Calculations

• High and Low Flow Pulses
• TQmean

• R-B Index
• Rise and Fall Rate
• Rise and Fall Count
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Hydrologic Metric Calculations

• High and Low Flow Pulses
• TQmean

• R-B Index
• Rise and Fall Rate
• Rise and Fall Count
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Hydrologic Metric Calculations

• High and Low Flow 
Pulses

• TQmean

• R-B Index
• Rise and Fall Rate
• Rise and Fall Count
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Benthic Index of Biological Integrity
• Taxa Richness and composition

– Total number of taxa
– Number of Ephemeroptera (mayfly) taxa
– Number of Plecoptera (stonefly) taxa
– Number of Trichoptera (caddis fly) taxa
– Number of long-lived taxa

• Tolerance
– Number of intolerant taxa
– Percent of individuals in tolerant taxa

• Feeding Ecology
– Percent of individuals that are predators
– Number of clinger taxa

• Population attributes
– Percent dominance (top 3 taxa)

Response to Human Dist.
↓
↓
↓
↓
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Tricoptera (caddis flies)

Ephemeroptera (mayflies)
Plecoptera (stone flies)

EPT Taxa
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Landscape Metrics

• Percent Total Impervious Area (%TIA)
• Percent Effective Impervious Area (%EIA)
• Surfacial geology

– Till
– Outwash
– Bedrock

• Precipitation - Elevation



% Total Impervious Area (TIA)

0

10

20

30

40

50

60

70

Issaquah H
obart - 12120600

R
ock - 31l

Issaquah - 12121600

C
ovington - 09a

M
ay - 37a

B
ig B

ear - 02a

Evans - 18a

Little Soos - 54i

N
orth Fork Issaquah - 46a

Jenkins - 26a

Soosette - 54h

Juanita - 27a

M
ercer - 12120000

Thornton - 12128000

M
iller - 42a

D
es M

oines - 11d

Landscape Metrics
% Effective Impervious Area (EIA)

0

5

10

15

20

25

30

35

Issaquah H
obart - 12120600

R
ock - 31l

Issaquah - 12121600

C
ovington - 09a

B
ig B

ear - 02a

Evans - 18a

Little Soos - 54i

M
ay - 37a

N
orth Fork Issaquah - 46a

Jenkins - 26a

Soosette - 54h

Juanita - 27a

M
ercer - 12120000

M
iller - 42a

Thornton - 12128000

D
es M

oines - 11d



% Total Impervious Area (TIA)

0

10

20

30

40

50

60

70

Issaquah H
obart - 12120600

R
ock - 31l

Issaquah - 12121600

C
ovington - 09a

M
ay - 37a

B
ig B

ear - 02a

Evans - 18a

Little Soos - 54i

N
orth Fork Issaquah - 46a

Jenkins - 26a

Soosette - 54h

Juanita - 27a

M
ercer - 12120000

Thornton - 12128000

M
iller - 42a

D
es M

oines - 11d

Landscape Metrics
% Effective Impervious Area (EIA)

0

5

10

15

20

25

30

35

Issaquah H
obart - 12120600

R
ock - 31l

Issaquah - 12121600

C
ovington - 09a

B
ig B

ear - 02a

Evans - 18a

Little Soos - 54i

M
ay - 37a

N
orth Fork Issaquah - 46a

Jenkins - 26a

Soosette - 54h

Juanita - 27a

M
ercer - 12120000

M
iller - 42a

Thornton - 12128000

D
es M

oines - 11d
%Till

0

10

20

30

40

50

60

70

R
ock - 31l

M
iller - 42a

D
es M

oines - 11d

Juanita - 27a

M
ercer - 12120000

Jenkins - 26a

M
ay - 37a

Thornton - 12128000

C
ovington - 09a

N
orth Fork Issaquah - 46a

Issaquah - 12121600

Issaquah H
obart - 12120600

Evans - 18a

B
ig B

ear - 02a

Soosette - 54h

Little Soos - 54i
%Bedrock

0

5

10

15

20

25

30

35

M
iller - 42a

D
es M

oines - 11d

Juanita - 27a

Jenkins - 26a

Thornton - 12128000

Evans - 18a

B
ig B

ear - 02a

Soosette - 54h

Little Soos - 54i

M
ercer - 12120000

N
orth Fork Issaquah - 46a

C
ovington - 09a

R
ock - 31l

Issaquah H
obart - 12120600

Issaquah - 12121600

M
ay - 37a

Mean Basin Elevation (ft)

0

200

400

600

800

1000

1200

Juanita - 27a

M
ercer - 12120000

Thornton - 12128000

M
iller - 42a

D
es M

oines - 11d

B
ig B

ear - 02a

Evans - 18a

Soosette - 54h

Jenkins - 26a

Little Soos - 54i

N
orth Fork Issaquah - 46a

M
ay - 37a

C
ovington - 09a

R
ock - 31l

Issaquah - 12121600

Issaquah H
obart - 12120600

Precipitation (mm)

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Thornton - 12128000

Juanita - 27a

M
iller - 42a

D
es M

oines - 11d

M
ercer - 12120000

Soosette - 54h

Little Soos - 54i

M
ay - 37a

B
ig B

ear - 02a

Evans - 18a

Jenkins - 26a

C
ovington - 09a

N
orth Fork Issaquah - 46a

R
ock - 31l

Issaquah - 12121600

Issaquah H
obart - 12120600

Precipitation vs. % Total Impervious Area

R2 = 0.7623

0

500

1000

1500

2000

0 10 20 30 40 50 60 70

%TIA

PR
EC

IP
IT

A
TI

O
N

 (m
m

)



Chemical Characteristics

• Conventional Water Quality Constituents
– Temperature
– Nutrients (SRP, TP, Nitrate, Ammonia)
– Total Suspended Solids (TSS)
– Fecal coliform bacteria



Correlation with Human 
Disturbance

Flow Reversals
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Correlation with B-IBI

Flow Reversals
(r2 = 0.44; p=0.005)
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Correlation with B-IBI
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Baetid Mayflys

Reproduced from Hynes, H.B.N. 1970.  The Ecology of Running Waters.



Correlation with Percent Baetidae
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R2 = 0.488
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Hydrologic Trends
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Hydrologic Trends
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Landscape Metrics
TQmean vs. Basin Area
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Chemical Characteristics
Correlation Matrix (R)

bibi p
Ammonia Nitrogen -0.563 0.023
Conductivity, Field -0.558 0.025
Dissolved Oxygen 0.343 0.193
Dissolved Oxygen, Field 0.452 0.079
Fecal Coliform -0.721 0.002
pH, Field 0.005 0.986
Sample Temperature, Fiel -0.621 0.010
Total Alkalinity -0.593 0.015
Total Phosphorus -0.715 0.002
Total Suspended Solids -0.398 0.127
Turbidity -0.598 0.015

B-IBI
B-IBI vs. FECAL COLIFORM

R2 = 0.522
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What about fish?

• F-IBI
• coho:cutthrout ratio

F-IBI vs. HIGH PULSE RANGE

R2 = 0.8765
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Management Implications

• Summer runoff not well controlled



Management Applications

• Basin Planning (Miller Creek)
• Annual Performance Measures



Models

• Ability to predict mean annual flow
• Ability to predict hydrologic metrics
• Account for climate variability
• Extrapolate to ungauged locations 



Miller Creek Basin Plan
Comparison of mean hydrologic metric values for POI-01 - HSPF model vs King County 

gauge records (46a 1991-2002)

code_name
Mann-Whitney U p-

value Current Conditions Gauge
High Pulse Count ns 24 22
High Pulse Range ns 300 276
High Pulse Duration ns 3 3
High Pulse Start ns 17-Oct 15-Oct
High Pulse End ns 12-Aug 18-Jul
Low Pulse Count ns 16 14
Low Pulse Range ns 231 189
Low Pulse Duration ns 12 9
Low Pulse Start ns 11-Apr 9-May
Low Pulse End ns 29-Nov 14-Nov
Onset of fall flows 0.000 8-Oct 15-Aug
TQ_mean ns 24% 27%
Fall Rate 0.021 -2.2 -2.9
Fall Count 0.000 92 118
Rise Rate 0.030 6.8 5.1
Rise Count 0.000 64 80
7-day minimum flow ns 1.6 1.5
Percent time above 2-year baseline ns 45% 56%
R-B Index 0.015 0.53 0.46
Flow Reversals 0.000 47 67
Qmax:Qmean ns 12.0 11.6

ns = No statistically significant difference between model and gauge metric (p>0.05)

• Miller Creek HSPF model predicts
– High Pulse Count
– High Pulse Duration
– High Pulse Range
– Low Pulse Range
– TQmean

• But not…R-B Index



Miller Creek Basin PlanMILLER CREEK TQMEAN
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Miller Creek Basin PlanMILLER CREEK HIGH PULSE RANGE
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Range of Variability Approach

• Select metrics and 
score 1 3 or 5

• Sum scores….
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Conclusions

• There are limits to mitigation

Engineered replacement of 
lost soil moisture storage and 
resulting delayed runoff timing 
is not economically feasible…

Loosely paraphrased from: 

Booth and Jackson.  1997. Urbanization of aquatic systems: degradation 
thresholds, stormwater detection, and the limits of mitigation.  JAWRA 
33(5):1077-1090.



Suggestions…

• More data compilation-collection-analysis 
or….

Experimentation!
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