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Abstract 

King County conducted physical and biological monitoring between 2010 and 2013 in the 
Lake Washington/Cedar/Sammamish (WRIA 8) watershed using common survey protocols 
and a probabilistic survey design. Hydrologic monitoring was also conducted at several 
locations to supplement physical and biological monitoring. The objectives of the project 
were to: (1) characterize conditions in small salmon streams using a spatially balanced, 
probabilistic sampling approach; (2) investigate relationships between landscape, 
hydrologic, biological and habitat metrics; (3) inform adaptive management actions 
recommended by the WRIA 8 Chinook Salmon Conservation Plan; and (4) communicate 
findings, methods and analytical approaches to local and regional forums. Data collected 
included habitat, fish composition, macroinvertebrate composition, hydrology, 
temperature, and land cover. Results included precision estimates (consistency of repeated 
measurements) of common habitat indicators, status and trend assessments, an analysis of 
land-cover/hydrology/habitat/biology relationships, and trend detection power analysis. 
 
Findings: 

 Stream biological conditions (as measured by the Benthic Index of Biotic Integrity or 
B-IBI) ranged from very poor in heavily urbanized areas to very good in rural, 
forested areas.  

 Stream habitat conditions considered important for salmon (wood volume and 
water temperature) were found to be below standards considered supportive of 
salmon use even in rural areas. Wood volume was consistently below regional 
reference conditions and water temperatures frequently exceeded state standards. 

 Specific metrics were identified that could be reliably measured over time and are 
recommended for use in a long term trend monitoring program. These metrics 
include important indicators of salmon habitat condition (wood volume, pool area, 
sediment composition, canopy cover, and B-IBI).  

 For the most reliable metrics, it will take sampling annually for 10 to 20 years to 
reliably detect a 3 percent annual change in status or condition.  

 Our study corroborated most other research on relationships between urbanization 
and benthic macroinvertebrate community condition as measured by B-IBI. Urban 
land cover and population density were the strongest predictors of declining B-IBI 
scores. 

 Additional work is needed to establish properly functioning salmon habitat 
condition thresholds for relevant metrics that are specific to Puget Sound lowland 
streams.  

 

Adaptive Management Recommendations: 

Certain salmon recovery priority areas located inside Urban Growth Area boundaries, 
where development and infill are occurring and forest cover is diminishing, appear to be at 
the most risk of further degradation in the short term. We recommend that the WRIA 8 
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Technical Committee and Salmon Recovery Council consider the following actions: 
 

 Update the watershed evaluation first performed for the (2005) WRIA 8 Chinook 
Salmon Conservation Plan, based on the new information in this report and other 
sources.  

 Based on a new watershed evaluation, re-examine management recommendations 
for all tier areas.  

 Request regional support to develop condition thresholds for biologically relevant 
metrics specific to Puget Sound lowland streams.  

 Implement an integrated and scalable monitoring strategy for the future.  

 

Conclusions 

One of the key elements of a relevant status and trends monitoring program is that it is 
sustained over time. The information presented in this study provides a solid foundation 
for the development of a well-designed and sustainable long term WRIA 8 status and 
trends monitoring program. These tools would benefit not only local watershed 
management, but the region as well. 
 
Future habitat status and trends monitoring that efficiently capitalizes on converging 
regional and local needs from multiple sectors (NPDES, salmon recovery, stormwater, etc.) 
would contribute substantially to a consistent and reliable long-term set of decision-
making tools.  
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EXECUTIVE SUMMARY 

To inform salmon recovery efforts, King County conducted field surveys of wadeable 
salmon streams from 2010-2013 to assess habitat conditions in the Lake Washington/ 
Cedar/Sammamish Water Resource Inventory Area 8 (WRIA 8) watershed. The purposes 
of the project were to: (1) characterize conditions in small salmon streams using a spatially 
balanced, statistically rigorous sampling approach; (2) investigate relationships between 
landscape, hydrologic, biological and habitat metrics; (3) inform adaptive management 
actions recommended by the WRIA 8 Chinook Salmon Conservation Plan; and 
(4) communicate findings, methods, and analytical approaches to local and regional 
forums. This type of comprehensive multi-year effort at the watershed scale is seldom seen 
in the U.S. and has not yet been attempted elsewhere in the Puget Sound region. 
 
Funding for the project was provided by the U.S. Environmental Protection Agency under 
grant number PO-00J09801, the WRIA 8 Salmon Recovery Council, and King County. 
 
Watershed Context 

The WRIA 8 watershed, encompassing Lake Washington and its tributaries in the central 
Puget Sound region, contains some of the most urbanized areas in Washington state. 
Despite this, salmon and trout are still found in urban streams, some of which are 
migratory routes for regionally important salmon runs. Conservation and recovery actions 
in the watershed are guided by the 2005 WRIA 8 Chinook Salmon Conservation Plan 
(hereafter the WRIA 8 Plan). Most Chinook salmon spawning and rearing occurs outside 
Urban Growth Area (UGA) boundaries where water quality is generally good and aquatic 
habitat conditions are considered excellent.  
 
Findings 

The data collected in this study provide important baseline information on the status and 
trends of wadeable salmon streams in the WRIA 8 watershed, as well as perspectives on 
the relationships between land cover, hydrology, habitat, and biological community 
response.  

 Stream biological conditions (as measured by the Benthic Index of Biotic Integrity or 
B-IBI) ranged from very poor in heavily urbanized areas to very good in rural, 
forested areas. 

 Stream habitat conditions considered important for salmon (wood volume and 
water temperature) were found to be predominantly not supportive for salmon use 
even in rural areas. Wood volume was consistently below levels needed to support 
properly functioning habitat conditions and water temperatures frequently 
exceeded state standards. 

 Generally, four years is not a sufficient length of time to see trends in stream 
resources. However, we did see a statistically significant upward trend 
(improvement) in the Benthic Index of Biotic Integrity (B-IBI) in the watershed 
between 2010 and 2013. There was no corresponding improvement in habitat 
condition in those streams during those years. Comparison to a larger WRIA 8 and 9 
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dataset with many more years of data suggests that the increase in B-IBI scores, 
while real, is likely due to natural variability.  

 The spatially-balanced data we collected are of sufficient precision to reliably test 
for trends in the sampled streams over time. We identified a short list of metrics 
representing important indicators of stream habitat conditions important to salmon 
(wood volume, pool area, sediment composition, canopy cover, and B-IBI) that are 
repeatable and precise. 

 Our analyses indicated that for most of the metrics we measured, it will take an 
annual monitoring program 10 to 20 years to reliably detect a significant change (3 
percent per year) in the status of the most relevant metrics. Currently no such 
program exists. 

 Our study corroborated most other research on relationships between land cover 
stressors and benthic macroinvertebrate community response as measured by 
B-IBI. Urbanization and population density best explained the observed variance in 
B-IBI scores – low levels of urbanization and human population density coincide 
with highest B-IBI scores and high levels of urbanization and population density 
coincide with lowest B-IBI scores. 

 Our study also provided the first test of the utility of a Fish Index of Biotic Integrity 
(F-IBI) developed especially for Puget Sound lowland streams. Our results indicate 
that the Puget Sound lowland F-IBI (although initially calibrated and validated with 
data collected primarily from King County streams) is confounded by contributing 
upstream basin area and/or stream size. Further research will be needed to identify 
a F-IBI that is comparable to the B-IBI, which is not confounded by natural 
landscape features. 

 
Adaptive Management 

As part of the 2005 Chinook recovery planning process, the watershed was organized into 
priority areas or “tiers” based primarily on Chinook use. Certain salmon recovery priority 
areas appear to be at risk of degradation in the short term. These areas include streams 
located inside the UGA boundaries where development and infill is occurring and forest 
cover is diminishing. Findings within the context of these recovery planning tiers follow: 
 

 Tier 1 areas include primary spawning habitat as well as migratory and rearing 
corridors for Chinook salmon. Management strategies for Tier 1 areas involve the 
preservation of existing high quality habitat, and restoration where needed. Our 
surveys confirm that the majority of Tier 1 areas are of relatively higher quality than 
Tier 2 or Tier 3 sites. B-IBI and pool area were generally higher in Tier 1 areas. 
However, wood and temperature metrics were low in all tiers. 

 Tier 2 areas contain streams with occasional Chinook use, and are important for 
preserving the overall spatial structure of Chinook in the watershed. Some Tier 2 
areas include streams located completely inside the UGA boundaries. Tier 2 streams 
inside the UGA are at the most risk of degradation in the short term. It is likely that 
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the most high-functioning Tier 2 area within UGA boundaries (i.e., North Creek) will 
degrade further without focused efforts. 

 Tier 3 areas are the most urbanized areas of the watershed, and have little or no use 
by Chinook salmon. These streams are generally in poor condition by most metrics. 
Strategies for Tier 3 areas focus on protecting or improving water quality or 
decreasing the effects of high flows from stormwater runoff. Current strategies are 
likely insufficient to support the long-term occurrence of coho salmon in these 
urban streams. 

 
Adaptive Management Recommendations 

 Re-evaluate the tier strategy based on new information in this report and 
other sources. Consider updating the watershed evaluation first performed for the 
(2005) WRIA 8 Chinook Salmon Conservation Plan. The information presented in 
this report and from other recent sources (e.g., land cover change and Chinook 
escapement reports) can be used to re-assess and update the classification 
framework.  

 Re-examine management strategies in light of the information on habitat 
quality in this report. Strategies for Tier 1 and Tier 3 areas appear to appropriately 
match conditions in those areas. However, Tier 2 areas include some streams inside 
the UGA boundaries where development and infill is occurring, and forest cover is 
diminishing. Because Tier 2 areas inside the UGA appear to be at the most risk of 
degradation in the short term, additional management actions may be warranted. 

 Reclassify some areas based on information acquired since 2005. The upper 
Cedar River and its tributaries above Landsburg Dam were classified as Tier 2 in the 
original WRIA 8 Plan because there was insufficient information on Chinook use 
above the dam. Data acquired since then confirms that this area has become a core 
area for Chinook and should be re-classified as Tier 1. Other areas, where watershed 
function and/or Chinook use has declined, may require reclassification to a lower 
level or increased efforts to support Chinook use. 

 Request regional support to develop condition thresholds for biologically 
relevant metrics that are specific to Puget Sound lowland streams. Thresholds 
based on reference conditions are needed to classify or categorize metrics into poor, 
fair, or good condition; or supporting/non-supporting properly functioning habitat 
condition. In this study, we could only identify thresholds for B-IBI, F-IBI, wood 
volume and summer maximum stream temperatures. Additional work is needed by 
the region to establish condition thresholds for other biologically relevant metrics 
that are specific to Puget Sound lowland streams. 

 Implement a monitoring strategy for the future. The information in this report 
provides baseline information collected in a spatially balanced and probabilistic 
sampling framework using appropriate methods with quantified precision. It 
provides estimates of precision that indicate it would take an annual monitoring 
effort about two decades to confidently detect a significant (3 percent) annual 
change.  
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Conclusions 

One of the key elements of a relevant status and trends monitoring program is that it is 
sustained over a long period of time. It is hoped that the information presented in this 
study provides a solid foundation for the development of a well-designed and sustainable 
long term WRIA 8 status and trends monitoring program. A small number of habitat and 
biological community metrics with high precision and repeatability, sampled annually, 
using a proven framework, regional data repositories and established analytical tools, 
benefits not only the watershed but the region as well.  
 
More broadly, future habitat status and trends monitoring that capitalizes on converging 
regional and local needs for multiple purposes (water quality permitting, salmon recovery, 
stormwater, etc.) could contribute substantially to a consistent and reliable long-term set 
of decision-making tools. 
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1.0 INTRODUCTION 

King County was awarded a grant by the U.S. Environmental Protection Agency (EPA) to 
monitor aquatic and riparian habitat of wadeable salmon streams in the Lake Washington/ 
Cedar/Sammamish watershed, also known as Water Resource Inventory Area 8 (WRIA 8). 
The purpose of the project was to characterize the conditions of small salmon streams in 
WRIA 8; to investigate relationships among land cover, hydrology, habitat, and biological 
systems across an urbanization gradient; and to provide information to support adaptive 
management of the WRIA 8 Chinook Salmon Conservation Plan (WRIA 8 SRC, 2005).  
 
This report documents the purpose and objectives, management questions, methods, 
results, conclusions and recommendations of the WRIA 8 status and trends monitoring 
conducted from 2010 through 2013. The information will be used in the 2015 update of the 
WRIA 8 Chinook Salmon Conservation Plan (hereafter WRIA 8 Plan).  

1.1 Background 

Local governments throughout Puget Sound are in the process of implementing a number 
of watershed-scale management plans, including watershed-based salmon recovery plans 
and the Puget Sound Action Agenda,1 but few local entities or watershed councils have the 
resources to adequately monitor the effects of those efforts. While some state and federal 
agencies conduct stream monitoring programs in the Puget Sound region, the geographic 
scope of those programs is too broad and the sampling intensity too limited for making 
decisions at the watershed scale.  
 
Monitoring is a key component of watershed management in the Puget Sound region and is 
essential for adaptive management, which calls for making adjustments to management 
strategies as needed based on new information. Jurisdictions must monitor over time to 
track changing watershed conditions, and to determine whether habitat conservation and 
restoration policies are successful. Decision-makers need accurate information regarding 
the health of streams to determine if trends in habitat conditions are contributing to the 
recovery of Endangered Species Act (ESA)-listed Chinook salmon (Oncorhynchus 
tshawytscha) and other species. Stream “health” from the eyes of a salmon is a complex 
subject that includes the quantity and quality of streamside vegetation, insect communities, 
instream wood and sediment processes, hydrology, temperature, conventional water 
quality, and other factors. Most assessments of stream health are either focused on a single 
problem (e.g., water quality) or too local to adequately characterize the watershed as a 
whole with precision or confidence. 
 
Objectives for habitat monitoring programs typically include estimating the current extent 
and status of a resource, estimating change in status between time periods, and estimating 
trends over time. To achieve these objectives, an appropriate, spatially balanced, and 
probabilistic sampling framework must be used. Monitoring protocols must be sufficient to 

                                                        
1 Puget Sound Action Agenda Center: http://www.psp.wa.gov/action_agenda_center.php  

http://www.psp.wa.gov/action_agenda_center.php
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evaluate the status of the resource at the appropriate scale and level of precision, yet be 
cost-effective. Metrics must be relevant to the monitoring question, and must be expected 
to respond in a measurable way to management actions. Measurements must be able to 
discriminate actual changes in the resource (“signal”) from sampling errors or natural 
variation (“noise”). 
 
In addition to documenting the status of a resource over time, monitoring at the watershed 
scale can help clarify relationships between urbanization (e.g., extent of impervious 
surfaces, road density, forest cover and forest fragmentation), hydrology (e.g., processes 
affecting flow timing, frequency, magnitude and duration), stream habitat conditions 
(e.g., sediment character, wood volume, pool area, riparian cover) and biological resources 
(e.g. benthic macroinvertebrate and fish assemblages). Interpreting these relationships is 
made easier when sufficient data from each of these elements are collected together, using 
a common sampling framework.  
 
This report describes the: 

 Purpose and objectives of the project; 

 Management questions, salmon recovery context, methods, data reduction approach 
and rationale for selection of metrics for more detailed analysis; 

 Monitoring results (status and trends); 

 Estimates of the extent of stream conditions in WRIA 8 for selected metrics; 

 Precision, signal-to-noise and trend-detection power estimates for selected metrics; 

 Assessment of relationships between land cover, hydrology, habitat and biological 
assemblages along an urbanization gradient; and 

 Conclusions and recommendations for future monitoring and adaptive 
management. 

1.2 Purpose and Objectives 

The primary purpose of this project was to assess the condition of stream and riparian 
habitat along small (wadeable) salmon streams in the WRIA 8 watershed, in order to 
inform adaptive management of the WRIA 8 Chinook Salmon Conservation Plan. A 
secondary purpose was to investigate relationships between land cover, hydrology, habitat, 
and biological assemblages in the watershed along an urbanization gradient.  
 
The project team conducted physical, biological, and hydrologic monitoring of 52 wadeable 
salmon stream reaches in WRIA 8 to accomplish the following objectives:  
 

1. Characterize conditions in small salmon streams in WRIA 8;  

2. Investigate relationships between development, land and water management, and 
biological and physical processes in streams, using modern protocols and spatially 
and temporally coherent datasets;  

3. Inform adaptive management actions for salmon recovery in WRIA 8; and 
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4. Communicate findings, methods, and analytical approaches to other local and 
regional forums. 

 
In order to help discern regional (e.g., climate) patterns from local patterns, the project also 
compared data collected at five EPA Sentinel stream sites located in the Puget Sound 
lowlands outside of WRIA 8.  

1.3 Management Questions 

The overall management questions we treat in this report are: 
 

1. Status: What is the condition of small salmon streams in WRIA 8 based on common 
stream attributes (fish and macroinvertebrate community indices, stream substrate, 
wood, pools, streamside forest cover)?  

2. Trends: Are stream conditions changing over time? 

3. Precision: How precise and repeatable are the measurements? 

4. Trend detection power: How often and at what level of effort would one need to 
monitor stream habitat in order to detect a change with reasonable confidence? 

5. Stressor-response relationships: What is the relationship between land use/land 
cover and stream habitat/biological community conditions? 
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2.0 METHODS 

The project used a probability-based survey design created by the Washington Department 
of Ecology (hereafter referred to as Ecology) to select sites on wadeable salmon streams 
throughout the WRIA 8 watershed (Ecology, 2008). Physical habitat, benthic 
macroinvertebrate assemblages, and fish species assemblages were surveyed over four 
years to characterize the status of the streams as well as begin to evaluate trends. 
Monitoring results are reported for 57 stream survey sites assessed between 2010 and 
2013 (52 sites inside WRIA 8 and 5 EPA Sentinel sites).   
 
In addition to habitat and biological data, land cover metrics were calculated for all sites 
and hydrologic data were compiled for a subset of sites. These data were collected for the 
purpose of investigating relationships between development, land and water management, 
and biological and physical processes in streams.  

2.1 Study Area 

The WRIA 8 watershed, located in the Puget Sound basin in western Washington, contains 
over 1.4 million inhabitants with a highly urbanized lowland, a less developed suburban 
fringe, and upland working forests and protected areas. Yet despite profound alterations to 
the watershed (including the lowering and “re-plumbing” of the second largest natural lake 
in the state),2 several salmon stocks inhabit the watershed, including Chinook  salmon 
(Oncorhynchus tshawytscha) and steelhead (O. mykiss) populations listed as threatened 
under the ESA. Most Chinook spawning and in-stream rearing occurs outside designated 
Urban Growth Area (UGA) boundaries and much of the upper watershed is in protected 
status or is the focus of restoration. Of the other salmonids found in the watershed, Puget 
Sound coho salmon (O. kisutch) are a federal Species of Concern, and sockeye salmon 
(O. nerka) are the focus of intense management (WDFW, 2012).  
 
The WRIA 8 watershed comprises 692 mi2 (1,792 km2) and includes two major river 
systems (Cedar and Sammamish) and three large lakes (Washington, Sammamish and 
Union – Figure 1). It also includes the marine nearshore and numerous smaller basins that 
drain directly to Puget Sound, from West Point in the City of Seattle northward to Elliott 
Point in the City of Mukilteo. WRIA 8 is located predominantly in western King County, but 
about 15 percent of the watershed extends northward into Snohomish County. A portion of 
the upper (eastern) watershed is the municipal drinking water supply for the City of 
Seattle, and is managed under a Habitat Conservation Plan (City of Seattle, 2000).3  
 

                                                        
2 Lake Washington was lowered by 2.4 m and flow into and out of the lake was redirected as a result of the 
completion in 1916 of a federal project to connect Lake Washington to Lake Union and Puget Sound. Details 
of these modifications can be found in Chrzastowski (1983). 
3 Cedar River Watershed Habitat Conservation Plan: 
http://www.seattle.gov/util/environmentconservation/ourwatersheds/habitat_conservation_plan/  

http://www.seattle.gov/util/environmentconservation/ourwatersheds/habitat_conservation_plan/
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Figure 1. Map of WRIA 8 study area and EPA Sentinel sites.  
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The eastern portion of the WRIA 8 watershed lies in the Cascade Range and receives up to 
102 inches of precipitation annually. The western portion occupies the Puget Lowland, and 
receives an average of 38 inches of rain per year. Only the upper Cedar River Basin, 
relatively high in the Cascades, develops an annual snowpack. The City of Seattle’s water 
supply facility captures runoff from the upper portion of the basin; an instream flow plan 
mitigates the impacts of this diversion (City of Seattle, 2000). All other watershed streams 
rely primarily on groundwater to sustain summer and early fall baseflow. 
 
Land cover varies considerably across the watershed: 18 percent is classified high/medium 
intensity development, 19 percent low density or developed open space, and 47 percent 
forested (2011 landcover data – NOAA Coastal Services Center, 2013). Most of the 
remaining easternmost land in the Cascades is designated for mixed use as state or federal 
parkland or private timber lands. Much of the lower/western portion of the watershed is 
heavily developed, and includes the cities surrounding Lakes Washington and Sammamish 
in King County as well as a portion of urbanized south Snohomish County.  
 
Streams in the lower watershed are highly modified, and exhibit the effects of urbanization 
and development: altered hydrologic regimes, disconnected floodplains, degraded riparian 
conditions, and poor water quality (May et al., 1977; Booth et al., 2004; Alberti et al., 2007; 
Segura and Booth, 2010; Scholz et al., 2011). The shorelines of the three largest lakes in the 
watershed are heavily developed, with little natural shoreline remaining. Despite this, 
salmon and trout are still found in urban streams, some of which are migratory routes for 
regionally important salmon runs. Outside the UGA boundaries, water quality generally is 
good and aquatic habitat condition is considered excellent. 

2.1.1 Salmon Recovery and Adaptive Management Context 

(Tiers) 

For salmon recovery planning and implementation purposes, the WRIA 8 Chinook Salmon 
Conservation Plan (hereafter the WRIA 8 Plan) partitioned the watershed into three 
management "tiers" (Leonetti et al., 2005). This framework was based on a watershed 
evaluation using land cover and other spatial data (ca. 2001-2003), Benthic Index of Biotic 
Integrity (B-IBI) scores (1995-2003), and documented Chinook salmon use. These tiers 
serve as the basis for conservation strategies and adaptive management in the watershed. 
 
Tier 1 areas (Figure 2 and Table 1) include primary spawning habitat as well as core 
migratory and rearing corridors. Management strategies for Tier 1 areas generally focus on 
preserving and improving existing high quality habitat. However, Tier 1 areas also include 
important migratory routes passing through urban or urbanizing zones where restoration 
or other actions are needed (i.e., Seattle, Renton, Issaquah, Redmond, Bothell, Lakes 
Washington and Sammamish, the Lake Washington Ship Canal and Chittenden Locks).  
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Tier 2 areas are either streams with high watershed function yet little Chinook use4 or 
streams with lower watershed function, but with episodic Chinook use and potential to 
contribute to the overall spatial diversity of the salmon populations in the watershed (e.g., 
North and Kelsey Creeks). Management goals for Tier 2 areas are to improve their habitat 
quality and use by salmon where possible (i.e., improve their status from Tier 2 to Tier 1).  

 
Tier 3 areas contain streams with lower watershed function and that are used by Chinook 
salmon infrequently or never, but are still important for water quality and flow 
management. Management goals for Tier 3 areas generally involve improving water quality 
and managing stormwater runoff. Most Tier 3 areas contain smaller streams in urbanized 
portions of the watershed with historically little use by Chinook salmon, though other 
salmonid species such as coho are (or have been) present. 
 

Table 1. WRIA 8 Tier classification framework (modified from Leonetti et al., 2005). 

 

Fish Use 

Watershed Evaluation Rating 

Higher Watershed 
Function  

Moderate Watershed 
Function 

Lower Watershed 
Function 

High (Core/ 
Migratory) 

Tier 1. Cedar River,  
Upper Bear Creek, 
Cottage Lake Creek, 
Issaquah Creek 
(Middle and Upper) 
 

Tier 1. Urban reaches of 
Cedar River, Lower Bear 
Creek, Lower Issaquah 
Creek, Issaquah Creek 
(east and north forks), 
Sammamish River 

Tier 1. Lake Washington, 
Lake Union/Ship Canal, 
Locks, Lake Sammamish 

Moderate 
(Satellite) 

Tier 2. Evans 
Creek, Taylor 
Creek, Upper Cedar 
Watersheda 

Tier 2. Little Bear Creek, 
North Creek  

Tier 2/3. Swamp Creek, 
Kelsey Creekb 

Low 
(Episodic/ 
None) 

Tier 2. Rock Creek, 
Peterson Creek, 
Walsh Creek 

Tier 3. May Creek, 
Tibbetts Creek,  

Tier 3. Marine Drainages,  
McAleer Creek, Juanita 
Creek, Thornton Creek, 
Coal Creek, Lyons Creek, 
Forbes Creek 

a 
The upper Cedar River and its tributaries above Landsburg Dam were opened to Chinook salmon 

passage in 2003. That area was classified as Tier 2 on the basis of insufficient data on Chinook use at 
the time the framework was created.

 

b 
Kelsey Creek was designated Tier 2 due to larger than expected Chinook spawning in that creek 

reported during the 1990s and early 2000s. 

 
 

                                                        
4 The upper Cedar River and its tributaries above Landsburg Dam were opened to Chinook salmon passage in 
2003. Since the Technical Committee did not have sufficient information on Chinook use above the dam when 
they created their classification framework, that area was classified as Tier 2.  
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Figure 2. Map of WRIA 8 and EPA Sentinel sample locations and WRIA 8 salmon recovery area 
Tiers. (Tier 1 migratory areas not shown.) 

 

Note:  Tiers in WRIA 8 denote priority habitat areas for Chinook salmon. Tier 1 areas are highest priority 
and include primary spawning areas as well as migratory and rearing corridors. Tier 2 areas are 
second priority and include areas less frequently used by Chinook salmon for spawning. Tier 3 
areas are infrequently used by Chinook salmon, but are still important areas for water quality and 
flow management. WRIA 8 WAM Sites refers to the 50 sites that met the probabilistic sampling 
criteria and are included in GRTS-based survey statistical analyses. WRIA 8 ERR Sites refers to 
two sites that did not meet the requirements of the probabilistic sampling design. These two sites 
are included with the WRIA 8 WAM sites in the other statistical analyses presented in this report. 
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2.2 Probability-Based Survey Design 

To efficiently extrapolate from a relatively small number of stream sample sites to the 
entire population of stream sample sites (i.e., sample frame), a statistically-based study 
design approach is needed. One such study design is the Generalized Random Tessellation 
Stratified (GRTS) design, which can produce a spatially balanced probability-based survey 
design (Stevens and Olsen, 2004; Olsen et al., 2012). Because the WRIA 8 survey design is 
spatially balanced and probabilistic, it is possible to extrapolate the observed metric values 
from the relatively small number of sites sampled to the entire sample frame. Details of the 
development of the survey design are provided below. 
 
Potential sampling sites were randomly selected using the state-wide Ecology Master 
Sample (Ecology, 2008) limited to sites within WRIA 8. The Master Sample was developed 
by Ecology as part of a comprehensive probability-based monitoring strategy designed to 
evaluate state-wide watershed health and salmon recovery efforts (Cusimano et al., 2006; 
Larsen et al., 2008; Roper et al., 2010). Ecology developed the Master Sample as an 
appropriate framework for their status and trends monitoring program and to facilitate 
stream sampling by a variety of agencies with the potential for integrating monitoring data 
across multiple scales (Larsen et al., 2008). 
 
The Master Sample is based on a GRTS survey design for linear resources (Olsen et al., 
2012). The Master Sample is a spatially balanced random set of sites that can be organized 
in a variety of ways that allow selection of sites over different geographic areas, stream 
types or sizes, or other features of interest. Each sample point represents approximately 
1 km of stream length on a 1:24,000-scale stream network.  
 
The WRIA 8 streams targeted for sampling were wadeable salmon bearing streams. 
Candidate sites had to meet the following criteria to be considered for sampling: (1) be 
wadeable, (2) have perennial flowing water, (3) be mapped as accessible to anadromous 
salmon on the King County GIS stream layer, and (4) include at least one riffle in the 150 m 
reach for benthic macroinvertebrate collection. An additional requirement for sampling 
was that sites on private property needed landowner permission for access. 
 
In accordance with the probabilistic GRTS protocol, sites were assessed in sequence until a 
sufficient number of sites were identified for sampling. The first 868 sites were assessed 
using a combination of geographic information system (GIS) pre-screening and field visits 
to determine whether they met criteria for inclusion in the sample frame.  
 
Analyses conducted to extrapolate the sample data to the wadeable salmon bearing 
streams in WRIA 8 required adjustment of the initial spatial weights (inclusion 
probabilities) because over sample sites were used.5 Although the survey was not stratified 

                                                        
5 Over sample sites were generated as part of the Ecology Master Sample GRTS design. These sites are used in 
the event that one or more sites selected in the initial sample cannot be used for some reason (e.g., owner 
access denial). This enables the replacement of sites that cannot be sampled with over sample sites that 
maintain the spatial balance of the original sample. 
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in the design stage, strata (Tiers 1, 2 and 3 described above) were defined in the analysis 
phase. Therefore, spatial weights were adjusted for each tier using the spsurvey analysis 
package in R6 (Kincaid and Olsen, 2013). Details of the extrapolation methods are 
described in Section 3.1 below.  
 
As noted above, our survey design was based on a random tessellation stratified sample, 
which spread our sampling sites randomly across the targeted streams in WRIA 8 and 
reduced the overall sample variance compared to simple random sampling (Urquhart, 
2012). We also used what is described as an “always revisit” panel design plan. This plan 
consists of visiting the same fixed number of locations every year (2010-2013). There are 
many other possible designs or panels, but habitat monitoring research has shown that the 
“always revisit” design generally has relatively high statistical power to detect trends 
compared to other possible survey designs (Urquhart et al., 1998; Urquhart, 2012).  
 
In addition to the sites selected with the GRTS design, five of ten EPA and state-designated 
Puget Sound Sentinel sites outside WRIA 8 were also surveyed annually, in partnership 
with the EPA and Ecology (Figure 2). Initial GIS and field surveys were conducted to select 
the Sentinel sites sampled in this study. The five sites were chosen because they were 
generally smaller wadeable streams that were most similar to the types of streams sampled 
in WRIA 8. 
 
These Sentinel sites are intended to describe the status and trends of wadeable stream 
health in the relative absence of human disturbance (Herger et al., 2012); therefore, 
comparing their condition over time to the WRIA 8 sites should help discriminate regional 
trends, (e.g., climate change) from local ones. These sites are not included in the GRTS-
based sample statistical analyses, though they are compared to WRIA 8 sites elsewhere in 
this report.  

2.3 Aquatic and Riparian Habitat 

Stream and riparian habitat data were collected during summer (July through August; 
2010-2013) at the 57 sites identified in Figure 2. Habitat sampling followed the monitoring 
protocols currently in use by Ecology and local agencies (Merritt, 2009) and the methods 
outlined in the Quality Assurance Project Plan (QAPP) developed for this study (Berge, 
2010).  
 
The Ecology protocol requires sample reach lengths to be 20 times the average bankfull 
width, or no less than 150 m. Since the majority of our sites were less than 8 m bankfull 
width, we standardized our sample reach length for all sites to 150 m.  
 
Data collected along each sample reach included important stream characteristics such as 
the number and depth of pools, channel width and depth, vegetative cover along the 
stream, and detailed channel profiles (e.g., cross-sections, thalweg profiles, sediment 

                                                        
6 R Core Team. 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical 
Computing, Vienna Austria, http://www.R-project.org.  

http://www.r-project.org/
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composition). These characteristics describe stream attributes that are directly or 
indirectly related to limiting factors for salmon recovery (Ecology, 2006). Five randomly 
selected sample reaches were re-surveyed each year (2010-2013) by a separate crew to 
assess measurement precision (see Section 2.8.1).  
 
Field data were loaded into Ecology’s Status & Trends Riverine Ecology & Assessment 
Monitoring (STREAM) Environmental Information Management System (EIM), which 
generated a large number of metrics from the raw data (Janisch, 2013; Ecology, 2014b). 
The metrics fell into the following categories: 
 

 Substrate (size characteristics, embeddedness) 

 Wood (volume and number of pieces) 

 Channel dimensions (width, depth) 

 Pools (area, average depth) 

 Bed stability 

 Riparian canopy cover (extent and character) 

 Human disturbance (characteristics and extent) 

 
The large number of metrics generated in the EIM was reduced for the statistical analyses 
conducted as part of this study by excluding metrics with more than 50 percent of the 
values equal to zero. The list was also reduced by including only summary metrics for 
wood volume (LWDSiteVolume100m and LWDVolumeMSq) and the number of wood 
pieces (LWDPieces100m) and excluding the metrics for individual size classes. The 38 
metrics selected for investigation are described in Table 2.  
 

Table 2. List and description of habitat metrics assessed as part of this study. 
 

PARAMETER Category Description (detailed definitions can be found 
in Janisch, 2013) 

BFWidth_BFDepth Channel dimensions Bankfull width:depth ratio 

D50 Substrate Median particle diameter, from size class 
estimates 

LRBS Bed stability Relative bed stability, Log10 transformed 
(Kaufmann et al., 2008) 

LWDPieces100m Wood Number of LWD pieces standardized per 100 m of 
site reach 

LWDSiteVolume100m Wood Volume of LWD standardized per 100m of site 
reach (m

3
/100 m) 

LWDVolumeMSq Wood Volume of LWD standardized per m
2 
 

PCT Cobble Substrate Percentage of substrate classified as 'cobble' 
(>64-250 mm) 

PCT Fines Substrate Percentage of substrate classified as ‘fine’ (silt, 
clay, non-gritty) 

PCT GravelC Substrate Percentage of substrate classified as 'coarse 
gravel’ (>16-64 mm) 
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PARAMETER Category Description (detailed definitions can be found 
in Janisch, 2013) 

PCT GravelCx Substrate Percentage of substrate classified as 'coarse 
gravel and larger’ (>16 mm) 

PCT GravelF Substrate Percentage of substrate classified as ‘fine gravel’ 
(>2-16 mm) 

PCT GravelFb Substrate Percentage of substrate classified as ‘fine gravel 
and smaller’ (<16 mm) 

PCT Pool Pools Percentage of site classified as 'pool'  

PCT PoolScour Pools Percentage of site classified as ‘scour pool’ 

PCT Sand Substrate Percentage of substrate classified as ‘sand’ (0.06-
2 mm) 

PCT SandFines Substrate Percentage of substrate classified as ‘sands and 
fine’ (<2 mm) 

PCT Wood Wood Percentage of substrate classified as ‘wood’ 

PPN CanConif Riparian canopy cover Proportion of canopy classified as ‘coniferous’ 

PPN CanDecid Riparian canopy cover Proportion of canopy classified as ‘deciduous’ 

PPN CanMixed Riparian canopy cover Proportion of canopy classified as ‘mixed’ 

PWP All Human disturbance Proximity weighted presence metric, all 
disturbance classes combined 

PWP Path Human disturbance Proximity weighted presence metric, human foot 
path 

RBS Bed stability Relative bed stability (Kaufmann et al., 2008) 

ResPoolArea100 Pools Vertical residual pool area, standardized m
2
 per 

100 m of site reach 

SD BFDepth Channel dimensions Standard deviation, bankfull depth (cm) 

SD BFWidth Channel dimensions Standard deviation, bankfull width (m) 

SD Embed Channel dimensions Standard deviation, substrate embeddedness 

SD EmbedCtr Channel dimensions Standard deviation, substrate embeddedness at 
channel center 

SD PoolUnitDepth Channel dimensions Standard deviation, pool depth (cm) 

SD TWDepth Channel dimensions Standard deviation, thalweg depth (cm) 

X BFDepth Channel dimensions Reach average, bankfull depth (cm) 

X BFWidth Channel dimensions Reach average, bankfull width (m) 

X DensioBank Riparian canopy cover Reach average, densiometer readings at bank 

X DensioCenter Riparian canopy cover Reach average, densiometer readings at channel 
center 

X Embed Substrate Reach average, substrate embeddedness 

X EmbedCtr Substrate Reach average, substrate embeddedness at 
channel center 

X PoolUnitDepth Pools Reach average, pool depth (cm) 

X TWDepth Channel dimensions Reach average, thalweg depth (cm) 

2.4 Aquatic Community  

Aquatic community data were also collected each year from the same 57 sites identified in 
Figure 2 using standardized monitoring protocols currently in use by Ecology, EPA, the U.S. 
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Fish and Wildlife Service (USFWS), King County, and other agencies, as described in the 
following sections.   

2.4.1 Benthic Macroinvertebrates  

A brief description of the benthic macroinvertebrate field sampling and laboratory 
methods follows. For more detail on the methods used in this study, the reader is referred 
to the QAPP (Berge, 2010). 
 
Benthic macroinvertebrate sampling was conducted on the same dates as riparian and 
stream habitat sampling, prior to any other work that might disturb the stream bed. 
Benthic macroinvertebrates were collected using a Surber sampler with a 500 µm mesh net 
on a 1x1-ft2 folding frame with a detachable cod end (the part of the net where the 
organisms are retained). Samples (1 ft2 each) were collected from eight riffles or fast-
moving, non-depositional areas and combined to create one composite (8 ft2) sample for 
the site. Slackwater areas were not sampled for benthic macroinvertebrates. If less than 
eight riffles were present at a site, additional samples were allocated to existing riffles 
within or adjacent to the sampling reach. Once the sample was collected, the contents of the 
Surber net were transferred to a sample container and preserved in the field with 95 
percent denatured ethanol. Each year, five randomly selected sites were re-sampled (2010-
2013) for benthic macroinvertebrates to assess measurement precision (see Section 2.8.1).  
 
Taxonomic analyses were performed by certified taxonomic laboratories according to 
standard laboratory protocols with a targeted minimum subsample of 600 organisms. 
Samples were typically analyzed to a “medium” level of standard taxonomic effort (STE).7 
However, in 2010 eighteen samples were analyzed at a “coarse” STE level; in addition, in 
2011, the taxonomic laboratory identified taxa in the subclass Acari (mites) to genus level; 
in all other years mites were identified to subclass. All data were uploaded to the Puget 
Sound Stream Benthos (PSSB) data management system 
(http://www.pugetsoundstreambenthos.org), which enables downloads of B‐IBI scores 
and metrics or raw taxonomic composition.  
 
The benthic macroinvertebrate metric selected for use in this study was the Puget Lowland 
0 to100 scale Benthic Index of Biotic Integrity (B-IBI) (King County, 2014a). Scoring of each 
sample was based on the associated sample metadata, which resulted in comparable B-IBI 
scores for samples regardless of the STE level. B-IBI is based on ten component metrics 
that can be scored from 0 to 10 resulting in a total B-IBI range from 0 to 100. The 
component metrics include four broad community characteristics that include taxa 
richness and composition (five metrics: total taxa richness, Ephemeroptera taxa richness, 
Plecoptera taxa richness, Trichoptera taxa richness, number of long-lived taxa), tolerant 
and intolerant taxa (two metrics: number of intolerant taxa, percent tolerant individuals), 
functional groups (two metrics: number of clinger taxa, percent predator individuals) and 
percent dominance of the three most abundant taxa (one metric).  

                                                        
7 Puget Sound Stream Benthos: Standard Taxonomic Effort: http://pugetsoundstreambenthos.org/Standard-
Taxonomic-Effort.aspx  

http://www.pugetsoundstreambenthos.org/
http://pugetsoundstreambenthos.org/Standard-Taxonomic-Effort.aspx
http://pugetsoundstreambenthos.org/Standard-Taxonomic-Effort.aspx
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The Puget Sound lowland B-IBI was selected for use in this study because it has been the 
primary assessment tool used to evaluate biological conditions in Puget Sound lowland 
streams since the 1990s (King County, 2014b). The Puget Sound lowland B-IBI has also 
recently been updated to reflect the most recent scientific information on taxa attributes 
and rescaled from a 10 to 50 to a 0 to 100 scale resulting in improved precision based on 
an analysis of signal to noise ratio (King County, 2014b). The Puget Sound lowland B-IBI 
has also been shown to be correlated with measures of land cover change and land cover 
fragmentation metrics (e.g., Booth et al., 2004; Alberti et al., 2007; Shandas and Alberti, 
2009) and hydrologic metrics (Booth et al., 2004; DeGasperi et al., 2009). 

2.4.2 Fish  

A brief description of the fish sampling methods follows. For more detail on the methods 
used in this study, the reader is referred to the QAPP (Berge, 2010).  
 
Fish sampling was conducted cooperatively with trained personnel from USFWS each 
summer when spawning salmonids were not present. Sampling was conducted by single-
pass electrofishing (Tabor et al., 2007). Fish and other aquatic invertebrates (e.g., frogs and 
salamanders) were netted and identified in the field (species and life stage) and released. 
For species that can be difficult to identify (e.g., species of sculpin or dace)  a few 
individuals were sacrificed to confirm field identification. No same-year re-sampling was 
conducted for fish surveys; therefore measurement precision could not be evaluated. 
 
The fish metric selected for use in this study was the Fish Index of Biotic Integrity (F-IBI) 
based on the work of Matzen and Berge (2008). The F-IBI was selected for use in this study 
because it was developed specifically for the assessment of the effects of urbanization on 
fish assemblages in Puget Sound lowland streams (Matzen and Berge, 2008). Unlike B-IBI, 
however, the Puget Sound lowland F-IBI has not been evaluated in any other studies. 
Therefore, use of the F-IBI in our study provided an opportunity to demonstrate the utility 
of F-IBI as an indicator of fish community health in Puget Sound lowland streams. 
 
F-IBI is based on six component metrics that can be scored 1 to 4 resulting in a total F-IBI 
range from 6 to 24. The component metrics include: percent invertivores, percent 
invertivores-piscivores, percent coho, percent cutthroat, percent sculpin (Cottus spp.), and 
percent individuals of the most abundant species (Matzen and Berge, 2008). 

2.5 Land Cover  

Land cover and other geospatial data were developed for the upstream contributing area 
delineated for the 57 stream survey sites identified in Figure 2. The term land cover is used 
rather loosely throughout this document to describe watershed physical characteristics 
(e.g., area, elevation, precipitation); road, population and stream density metrics; land use 
and land cover (e.g., agriculture, urban and forest); and land cover fragmentation metrics. 
These metrics were chosen to evaluate relationships with our biological response variables 
and natural basin features (i.e., watershed physical characteristics) and land cover metrics 
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associated with human disturbance (see Section 2.8.3). The 23 land cover metrics included 
in this study are listed and described in Table 3.  
 
Details regarding the geospatial data sets and Geographic Information System (GIS) 
analyses conducted to derive these metrics are provided below. In addition to compiling 
data on watershed characteristics upstream of the stream habitat sampling sites, a similar 
data set was developed for the stream gauging sites selected for use in this study (see 
Section 2.6). 
 
Contributing upstream basin area for each sampling site was calculated in GIS using 10-m, 
LIDAR-derived digital elevation models (DEMs). Average annual precipitation for each sub-
watershed was modeled with the Zonal Statistics geoprocessing function in ArcGIS, using 
the parameter-elevation regressions on independent slopes model (PRISM) 30-year 
normal raster dataset (1981-2010; PRISM Climate Group, 2014). Stream density was 
calculated using the 1:24,000-scale National Hydrography Dataset (NHD) adapted by 
Ecology (Ecology, 2014a). Road density was calculated using roads data from the National 
Map transportation data layer (USGS, 2014). Population was derived from 2010 Census 
block data (Washington State Geospatial Data Archive, 2014). Population density was 
estimated using the percentage of each census block in the contributing basin area and 
multiplying the block population by that percentage.  
 
Land cover data were downloaded from the NOAA Coastal Change Analysis Program 
(C-CAP) regional land cover dataset for 2011 (NOAA Coastal Services Center, 2013). The 
three C-CAP forest classes (deciduous, evergreen, and mixed) were combined into a single 
“forest” category. Likewise, the “urban” category is a combination of the four C-CAP 
“developed” classes (high, medium, low intensity urban and developed open space). 
Impervious land cover data were downloaded from the National Land Cover Database 
(NLCD) percent developed imperviousness layer for 2011 for the conterminous United 
States (Multi-Resolution Land Characteristics Consortium, 2013). Both C-CAP and NLCD 
datasets used in this project were developed from LandSat imagery at a scale and minimum 
mapping unit of 30 m. 
 
Forest fragmentation metrics were produced in ArcGIS from our forest category using 
Landscape Fragmentation Tool v2.0 (Parent and Hurd, 2008). The Landscape 
Fragmentation Tool maps four types of landscape patterns present for a specified land 
cover (e.g., forest). “Core” regions are solid forested areas, “edge” and “perforated” occur 
along the periphery of core areas, and “patch” regions make up small fragments that are 
completely isolated from core areas. Additionally, the core regions are split into three size 
classes: large (>500 ac), medium (250-500 ac), and small (<250 ac). Forest-cover patches 
were classified as perforated, edge, patch, or core based on a specified edge width of 100 m.  
 



Monitoring for Adaptive Management 

King County Science and Technical Support Section  16 April 2015 

Table 3. List and description of watershed land cover and geospatial metrics used in this study. 

 
Metric Description (units) Source 

Watershed physical characteristics  

WA_ha Watershed area (ha ) King County GIS 

Elev_mean Mean elevation (ft) King County GIS 

PCT_slope_mean Mean percent watershed slope (%) King County GIS 

Precip_mean_mm Mean precipitation (mm), 1981-2010 PRISM Climate Group 

Road, population and stream density metrics  

Rd_xings_perkm Number of road/stream crossings per kilometer of stream in the reporting unit 
(count) 

USGS National Map 

Rd_xings_total Total number of road/stream crossings (count) USGS National Map 

Rd_dens_persqkm Road density derived from USGS National Map transportation data layer 
(km/km2) 

USGS National Map 

Stream_dens_persqkm Stream density derived from 1:24,000-scale National Hydrography Dataset 
(km/km2) 

Ecology 

Pop_dens_perskkm Population density derived from 2010 census  (#/km2) 2101 Census 

Land use/Land cover metrics  

PCT_Agriculture Percent agriculture - cultivated, and pasture/hay (%) C-CAP (2011) 

PCT_Barren Percent barren - bare land (%) C-CAP (2011) 

PCT_Forest Percent forest - deciduous, evergreen and mixed (%) C-CAP (2011) 

PCT_Grassland Percent grasslands - grassland (%) C-CAP (2011) 

PCT_Shrub Percent shrub - scrub/shrub (%) C-CAP (2011) 

PCT_Urban Percent urban - high intensity, medium intensity, low intensity, and open 
space developed (%) 

C-CAP (2011) 

PCT_Wetland Percent wetland - palustrine forested, scrub/shrub, emergent wetlands (%) C-CAP (2011) 

PCT_Imp Percent developed impervious surface (%) NLCD (2011) 

Land cover fragmentation metrics a  

PCT_EDGE Percent of land cover in watershed classified as forested 'edge'  (100 m 
perimeter of core areas) 

C-CAP (2011) 

PCT_LG_CORE Percent of land cover in watershed classified as forested 'large core' (100 m 
from the nearest non-forest pixel). Large core patches have an area greater 

C-CAP (2011) 
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Metric Description (units) Source 

than 500 ac 

PCT_MED_CORE Percent of land cover in watershed classified as forested 'medium core' (100m 
from the nearest non-forest pixel). Medium core patches have an area 
between 250-500 ac 

C-CAP (2011) 

PCT_PATCH Percent of land cover in watershed classified as forested 'patch.' Patch pixels 
are small forested areas that do not contain any core pixels 

C-CAP (2011) 

PCT_PERF Percent of land cover in watershed classified as forested 'perforated.' 
Perforated pixels are those pixels along the inside edges of small non-forested 
gaps 

C-CAP (2011) 

PCT_SM_CORE Percent of land cover in watershed classified as forested 'small core' (100m 
from the nearest non-forest pixel). Small core patches have an area less than 
250 ac 

C-CAP (2011) 

a Landscape Fragmentation Tool v2.0; King County GIS  
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2.6 Hydrology  

This study relied primarily on data from existing stream discharge monitoring networks 
maintained by various agencies, including King County, U.S. Geological Survey (USGS), 
Seattle Public Utilities, Snohomish County, Kitsap County and the City of Bellingham. The 
locations of gauging stations maintained by these agencies were compiled and stations in 
proximity to study monitoring locations were identified for further analysis. As a 
supplement to ongoing gauging efforts, additional gauging stations were established as 
part of this study at previously occupied, but discontinued gauging locations located in 
relatively close proximity (within 6.5 km or less) to monitoring locations. Gauging methods 
followed the protocols established in the QAPP developed for this study (Berge, 2010).  
 
A total of 9 gauging stations were established, but due to difficulties of maintaining 
continuous flow monitoring stations on small streams, reliable stage data and stage-
discharge relationships could not be developed for two locations (Lunds Gulch Creek and 
Lewis Creek (see Table 4). Of the remaining seven gauges, two represented study locations 
that might also be represented by existing gauging stations (Lyon Creek [34b by 34a] and 
Carey Creek [25i by 12120600]). The gauging stations were established on these two 
creeks because the existing gauges were relatively distant from the study site locations. 
The remaining five gauges were established on Dewatto Creek (DW_KC), Coal Creek (06b), 
Tibbetts Creek (67a), Kelsey Creek (38C) and Peters Creek (51O). 
 
Data from a total of 37 stream discharge monitoring stations potentially representing 
hydrologic conditions at 31 stream monitoring locations were assessed (Figure 3 and Table 
4). The term “potential” is used to acknowledge that gaps in the continuous gauging 
records further reduced the number of useable pairs of stream gauging and study 
monitoring locations. 
 
Daily average flow data were compiled for the stream gauge records and Matlab scripts 
were used to calculate 12 hydrologic metrics (Table 5). Eight of these metrics were selected 
based on a previous study that identified hydrologic metrics that showed a statistically 
significant relationship with watershed percent total impervious area, percent forest cover 
and B-IBI scores (DeGasperi et al., 2009). An additional 4 metrics were calculated based on 
the hypothesis that they may be correlated with measures of fish community structure. 
 
Metrics were calculated for each year of available data. Depending on the metric, the 
calculation basis was Calendar Year (e.g., CY 2012 = Jan 1-Dec 31 2012), Water Year (e.g., 
WY 2012 = Oct 1-Sep 30 2012) or summer (e.g., summer 2012 = Jul 1-Oct 31 2012) (Table 
5). In addition to metric calculations, the records were also analyzed for the number of 
missing days each year during each of the three time windows. The number of missing days 
in any particular time window was used to exclude data with many missing records from 
inclusion in statistical analyses. Ideally, only periods with no missing records would be 
used to ensure the reliability of the calculated metrics. However, such a strict criterion 
would result in a significant reduction in the number of useable hydrologic gauging 
stations. 
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Figure 3. Map showing paired stream gauging and WRIA 8 and EPA Sentinel monitoring sites. 

 
Note: Lines with arrows indicate which stream gauge was used when more than one gauge was located 

near a stream habitat monitoring site. 
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An analysis was conducted to evaluate the effect of varying the tolerance for missing data 
on the number of useable station years in the analysis. Based on that analysis, a threshold 
of no more than 5 missing days in any metric calculation period was chosen to maximize 
the number of useable station-year data, while minimizing the potential errors introduced 
by missing data.  
 
Where more than one gauge was considered to potentially represent hydrologic conditions 
at a particular stream habitat monitoring location, the number of useable station-year data 
points was used to determine which gauge to use in the statistical analyses describe in 
Section 2.8.3. Ultimately, four EPA Sentinel sites and 24 WRIA 8 sites were paired with 28 
stream gauging sites for statistical analysis (see Table 4 and Figure 3).  
 
A comparison of selected land cover metrics between stream flow gauging and stream 
monitoring sites was conducted to evaluate how representative the stream gauging 
location was of conditions in the stream monitoring reach (see Appendix A).  Selected 
hydrologic metrics calculated between nearly co-located stream gauging locations or 
stations located on the same stream network were also compared to evaluate the effect of 
gauging location on hydrologic metric variability. Based on these comparisons, we believe 
these paired gauge-study site locations were suitable for use in our exploration of potential 
flow-ecology relationships (see Section 2.8.3).  

2.7 Stream Temperature  

Continuous (15-minute) temperature data were collected at 48 of the 52 WRIA 8 and 4 of 
the 5 Sentinel sampling sites during July through August of 2012 and 2013 (Figure 4). This 
period was selected because it is during these two months that the highest stream 
temperatures typically occur in this region (Booth et al., 2014). This is also the period when 
state temperature standards for the protection of cold water fish such as salmon and trout 
are typically exceeded in King County streams (King County, 2014c). 
 
Temperature measurements were made using a thermistor anchored on the stream bottom 
in the thalweg. All thermistors were checked in an ice bath for accuracy (i.e., within ±0.2 oC) 
prior to deployment. All data were downloaded and checked for anomalies. Obvious 
anomalies, typically due to air exposure as stream flow declined, were removed before 
loading the data into King County’s Hydrologic Information Center.8 
 
There were a few sites where thermistors were lost or no useable data were collected in 
one or both years. Sites where no data were collected included two in the Bear Creek basin 
(WAM06600-017111 and WAM06600-013031), one in the Issaquah Creek basin 
(WAM06600-100519) and one in the North Creek basin (WAM06600-126891). Glendale 
Creek was the only Sentinel site where no temperature data were collected in either 2012 
or 2013.  

                                                        
8 King County Hydrologic Information Center: http://green2.kingcounty.gov/hydrology/  

http://green2.kingcounty.gov/hydrology/
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Table 4. Summary list of potential stream flow gauging locations co-located with WRIA 8 and Sentinel monitoring sites. 

 
      Years of Useable Records (<6 missing days in year/season) 

Site ID Stream Gauge ID Creek name Description Operator Habitat/Biota Sampling Water Year Calendar Year Summer (Jul-Oct) 

Sentinel Sites         
WAM06600-001639

* 
12069550 Big Beef Creek Big Beef near Seabeck, WA USGS 2010-2013 5 5 5 

EPA06600-DEWA01 DW_KC Dewatto River Dewatto Creek near Dewatto, WA King Co - this study 2010-2013 1  - 3 
EPA06600-CHUC01 ARRO Chuckanut Creek Chuckanut Creek in Arroyo Park Bellingham 2010-2013 2 2 3 
SEN06600-GRIF09 21A Griffin Creek Griffin Creek King Co 2010-2013 5 5 5 

WRIA 8         

Puget Sound         
WAM06600-063051 LGC Lunds Gulch Creek Lunds Gulch Creek King Co - this study  -  -  - 
WAM06600-057739 STA505 Venema Creek Venema Creek Seattle 2010-2013 4 4 4 
WAM06600-063831 STA508 Pipers Creek Pipers Creek Seattle 2010-2013 4 4 4 

Lake Washington        
WAM06600-038087 38C Kelsey Creek Kelsey at NE 8th King Co - this study 2009-2013 1 1 2 
WAM06600-080407 12120000 Kelsey Creek Mercer Creek near Bellevue, WA King Co 2009-2013 5 5 5 
WAM06600-000391 06b Coal Creek Coal Creek blw Coal Creek Pkwy crossing King Co - this study 2009-2013  -  - 1 
WAM06600-035963 34B Lyon Creek Lyon Creek abv 244th King Co - this study 2010-2013 1  - 2 
WAM06600-035963 34a Lyon Creek Lyon Creek near mouth in Lake Forest Park King Co 2010-2013 4 4 4 
WAM06600-081267 37a May Creek May @ mouth King Co 2010-2013 4 4 4 
WAM06600-081267 37H May Creek at 143 Pl SE May Creek at 143 Pl SE King Co 2010-2013 4 4 4 
WAM06600-081267 37b May Creek at Coal Creek PKWY May Creek at Coal Creek PKWY King Co 2010-2013  -  -  - 
WAM06600-083959 27a Juanita Creek Juanita Creek at mouth King Co 2010-2013 4 4 4 
WAM06600-115443 31h Taylor Creek Taylor Creek at mouth King Co 2009-2013 5 5 5 
WAM06600-065043 STA401 Taylor Creek Taylor (Seattle) Seattle 2010-2013 3 3 3 

Sammamish River        
WAM06600-083131 Sc Swamp Creek Swamp Cr @ I-405 Snohomish Co 2010-2013 3 2 3 
WAM06600-015067 So Scriber Creek Scriber Cr @ Oak Way Snohomish Co 2010-2013 4 4 4 
WAM06600-049499 Nt North Creek North Cr @ 228th St Snohomish Co 2009-2013 1 2 2 
WAM06600-049499 Nc North Creek North Cr @ County line Snohomish Co 2009-2013 2 2 2 
WAM06600-067147 No North Creek North Cr @ 164th St SE Snohomish Co 2009-2013 4 3 4 
ERR06600-091291 Bc Little Bear Creek Little Bear Cr @ 228th St SE Snohomish Co 2010-2013 1 1 3 
WAM06600-023691 Lb Little Bear Creek Little Bear Cr @ 51st St SE  Snohomish Co 2009-2013 2 3 3 
WAM06600-050295 51O Peters Creek Peters Creek tributary to Sammamish River King Co - this study 2010-2013 1  - 3 
WAM06600-036971 02f/02f2 Big Bear Creek Bear Creek at NE 162nd King Co 2009-2013 5 5 5 
WAM06600-111639 02N Stensland Creek Stensland Creek at NE 95th ST, Redmond WA King Co 2009-2013 2 2 2 
WAM06600-076119 02g Cottage Lake Creek Cottage Lake Creek at Avondale RD NE King Co 2009-2013 5 5 5 

Lake Sammamish        
WAM06600-062567 67a Tibbetts Creek Tibbetts Creek above Tributary 0170 Issaquah - this study 2010-2013 2 2 2 
WAM06600-020391 63a Lewis Creek Lewis Creek at West Lake Sammamish Parkway SE King Co - this study  -  -  - 
WAM06600-123207 12121600 Issaquah Creek Issaquah Creek near mouth USGS 2009-2013 5 5 5 
WAM06600-039815 14b East Fork Issaquah Creek East Fork Issaquah Creek @ NE Birch King Co 2009-2013 5 5 5 
WAM06600-002259 12120600 Issaquah Creek Issaquah Creek near Hobart, WA USGS 2009-2013 5 5 5 
WAM06600-002259 25i Carey Creek Carey Creek at 287th King Co - this study 2009-2013  -  - 3 
WAM06600-022259 31q Webster Creek Webster Creek King Co 2009-2013 4 4 5 

 

Note: The 28 paired locations used in statistical analyses (described in Section 2.8.3) are italicized and highlighted in gray above. 
* There may be some confusion regarding this site ID. This site ID is used in our database developed for this study. Ecology’s Environmental Information Management system uses EPA06600-BEEF01 as our site ID and the ID above is used for 

Ecology sampling events that have occurred at nearly the same location. 
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Table 5. List and description of the hydrologic metrics used in this study. 
 

Flow component Metric name Description Expected Response to Urbanization units basis Reference 

 

 High Flow Pulse   

Frequency High Pulse Count Number of times each water year that 
discrete high flow pulses occur. 

Increase Count WY Richter et al. (1996, 1997, 1998) 

Duration High Pulse Duration Annual average duration of high flow 
pulses during a water year. 

Decrease Days WY Richter et al. (1996, 1997, 1998) 

Duration High Pulse Range Range in days between the start of the first 
high flow pulse and the end of the last high 
flow pulse during a water year. 

Increase Days WY DeGasperi et al. (2009) 

 Low Flow Pulse   

Frequency Low Pulse Count Number of times each calendar year that 
discrete low flow pulses occurred. 

Decrease Days CY Richter et al. (1996, 1997, 1998) 

Duration Low Pulse Duration Annual average duration of low flow pulses 
during a calendar year. 

Decrease Days CY Richter et al. (1996, 1997, 1998) 

 Various      

Frequency Flow Reversals The number of times that the flow rate 
changed from an increase to a decrease or 
vice versa during a water year.  Flow 
changes of less than 2 percent are not 
considered. 

Increase Count WY Richter et al. (1998) 

Flashiness TQ_mean The fraction of time during a water year 
that the daily average flow rate is greater 
than the annual average flow rate of that 
year.  

Decrease Unitless WY Konrad (2000), Konrad and Booth 
(2002) 

Flashiness R-B Index Richards-Baker Flashiness Index – A 
dimensionless index of flow oscillations 
relative to total flow based on daily 
average discharge measured during a 
water year 

Increase Unitless WY Baker et al. (2004) 

Additional metrics potentially related to fish community structure   

 Low flow      
Magnitude 7-day summer minimum flow Centered 7-day moving average of summer 

(Jul-Oct) minimum flow. 
Depends on water management activities cfs summer 

Timing Julian date of summer minimum flow Date of summer (Jul-Oct) minimum flow. Depends on water management activities Julian Date summer 
Magnitude 30-day summer low flow Centered 30-day moving average of the 

summer (Jul-Oct) minimum flow 
Depends on water management activities cfs summer 

 High Flow      
Magnitude Qmax:Qmean Ratio of the annual water year maximum 

flow to the long term mean annual flow. 
Increase Unitless WY  
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Figure 4. Map showing continuous summer (July-August) temperature monitoring locations in 
2012 and 2013. 
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There were a few WRIA 8 sites where useable data were collected only in 2103. These sites 
included Perrinville Creek (WAM06600-083243), Lunds Gulch Creek (WAM06600-
063051), Lewis Creek (WAM06600-020391), and Piper’s Creek (ERR06600-035863). Only 
one year of useable data was collected at the Chuckanut Creek Sentinel site in 2012. 
 
The July-August water temperature data were compiled and used to calculate eight 
temperature metrics (Table 6). 
 
In addition to metric calculations, the data were also analyzed for the number of missing 
days each year during July and August where data were missing. The number of missing 
days was used to exclude data with many missing records from inclusion in statistical 
analyses. Ideally, only periods with no missing records would be used to ensure the 
reliability of the calculated metrics. There were five sites/years with incomplete data 
between July and August. The number of missing days of data ranged from 16 for Kelsey 
Creek (WAM06600-038087) in 2013 to 23 for Carey Creek (WAM06600-002259) in 2012. 
Years with any missing data were excluded from the statistical analyses described in 
Section 2.8.3. 
 

Table 6. List and description of temperature metrics used in this study. 
 

Metric Description 

7DMax Maximum (July-August) 7-Day moving average of the daily maximum 
temperature 

1DMax Maximum (July-August) daily maximum temperature 

DielRange Average (July-August) 24-hr range in temperature 

MeanT Average (July-August) temperature 

MinT Minimum (July-August) daily minimum temperature 

DaysGT16 Number of days (July-August) that temperature exceeds 16 
o
C (a) 

DaysGT17p5 Number of days (July-August) that temperature exceeds 17.5 
o
C (b) 

DaysGT23 Number of days (July-August) that temperature exceeds 23 
o
C (c) 

a Washington Administrative Code (WAC) 173-201A – Aquatic life temperature criterion for the protection 

of core summer salmonid habitat 
b WAC 173-201A – Aquatic life temperature criterion for the protection of salmonid spawning, rearing, 
and migration 
c WAC 173-201A – Criterion to prevent acute lethality and barriers to migration of moderately acclimated 
adult and juvenile salmonids 
 
 

2.8 Statistical Analyses 

Statistical analyses conducted for this study had four objectives: (1) evaluate the precision 
of replicated habitat and biological community metrics (i.e., habitat and benthic 
macroinvertebrate metrics) through variance component analysis and calculation of 
precision in order to identify metrics with the highest power to detect trends, (2) describe 
the status and trends of the most precise metrics with quantified confidence bounds, 
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(3) explore relationships between metrics representing stressors (i.e., land cover, habitat, 
hydrology, and temperature) and responses (benthic macroinvertebrate and fish metrics) 
and (4) using the results of the variance components analysis, conduct a power analysis of 
the ability to reliably detect trends in selected metrics that included field replicated data 
(i.e., B-IBI and habitat metrics). 
 
All of the data generated as part of this study are available through the project website9 to 
allow other investigators to improve and build upon the analyses presented in this report. 
The following sections outline the methods used to conduct the four broad categories of 
statistical analyses identified above. 

2.8.1 Precision Analysis 

Precision as used in this report is defined generally as the ability to consistently reproduce 
a particular measurement. Ideally, field crews following the same protocols can revisit the 
same site on the same or nearly the same day and produce nearly the same value of a 
particular stream attribute (i.e., very similar results can be obtained). The degree to which 
these replicated results differ provides an estimate of precision, which is critical to the 
statistical design of any monitoring program. The methods used to estimate precision are 
described below. 
 
Environmental status and trends programs need to evaluate whether the aquatic resource 
conditions are improving, declining, or maintaining current condition beyond the site scale 
(Larsen et al., 1995). Implicit in that need is the need for monitoring programs to consider 
the aquatic resource as a statistical population and focus on sampling approaches that 
allow for regional extrapolation from the sampled population and that quantify 
uncertainty.  
 
A critical step in the development of a well-designed status and trends monitoring program 
is the evaluation of the components of variance of particular indicators. The relative 
magnitude of the components of variance for a particular indicator affects uncertainty and 
statistical power to evaluate status and trends and may identify potential approaches for 
minimizing a particular variance component (Larsen et al., 1995). The components of 
variance (σ2) of a typical status and trends program can be described as follows: 
 
 
 𝜎𝑇𝑜𝑡𝑎𝑙

2         =    𝜎𝑆𝑖𝑡𝑒
2                    +     𝜎𝑌𝑒𝑎𝑟

2                +        𝜎𝑆𝑖𝑡𝑒:𝑌𝑒𝑎𝑟
2                  +     𝜎𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙

2  
 
Total 
variance 

 
= 

 
Population 
variance 

 
+ 

 
Year 
variance 

 
+ 

 
Interaction 
effects variance 

 
+ 

 
Residual 
variance 

 
Population variance describes the variance of a measurement made on a subsample of sites 
representing the population of interest during an index year. In the absence of other 

                                                        
9 WRIA 8 Wadeable Streams Project website: http://www.kingcounty.gov/environment/wlr/sections-
programs/science-section/doing-science/wadeable-streams.aspx  

http://www.kingcounty.gov/environment/wlr/sections-programs/science-section/doing-science/wadeable-streams.aspx
http://www.kingcounty.gov/environment/wlr/sections-programs/science-section/doing-science/wadeable-streams.aspx
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sources of variance, these measurements would provide an estimate of status and 
associated variance for that year.  
 
Year variance measures how much all sites (collectively) are higher or lower each year 
than the long term mean, or in the presence of a trend, the variation from the trend line 
each year. Regional trend detection power is very sensitive to this component of variance. 
This component of variance can be thought of as a common regional pattern of variance 
caused by regional-scale factors such as regional climate conditions and is sometimes 
referred to as a year effect or temporal coherence (Larsen et al., 1995). 
 
Site:Year interaction variance represents the year to year fluctuation among individual 
sampling sites. These fluctuations reflect responses to effects operating at the site level that 
is not already described by year effect described above. The Year and Site:Year variance 
can be separated by revisit samples collected at multiple sites each year over a number of 
years. 
 
Residual variance is the variance estimated from repeat sampling at multiple sites within a 
year. If residual variance of a particular measurement is relatively high, it may not be a 
useful indicator of status or trend. However, based on the information generated as part of 
the estimation of measurement variance, it may be possible to reevaluate and improve 
measurement methods. For example, residual variance might be reduced through sampling 
technology improvements, improved survey team training, or refinement of sampling 
protocols (Larsen et al., 1995). 
 
Note that Site:Year and Year variance are irreducible natural components of variance. If the 
variance of these components is relatively high, then a monitoring program may consider 
an increased number of sites sampled or increase the expectation of the number of years 
that would have to be monitored in order to detect policy relevant changes in status. 
Another possibility would be to identify covariates that could be used to reduce these 
components of variance (e.g., eliminate effect of climate variability using stream flow, air 
temperature or precipitation measurements). 
 
Variance Components Analysis 

Because the WRIA 8 Status and Trends monitoring replicate design was not balanced (all 
sites were not revisited each year and one site was not sampled in 2013 due to access 
limitations) we used a linear mixed-effects model to estimate the components of variance 
(Kincaid et al., 2004; Larsen et al., 2004). The model was of the form:  
 
𝑌𝑖𝑗𝑘 =  𝜇 + 𝑆𝑖 + 𝑇𝑗 + 𝑆𝑇𝑖𝑗 + 𝐼𝑖𝑗𝑘  

 
where Yijk is the response for the kth visit to stream site i during year j, µ is the overall 
mean, Si is the random effect due to stream site i, Tj is the random effect due to year j, STij is 
the random effect due to the interaction of site i and year j, and Iijk is the residual variation 
for the kth visit at site i during year j. Subscript i ranges from 1 to the number of stream 
sites in the survey, subscript j ranges from 1 to the number of years of data, and subscript k 
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ranges from 0 to the number of site revisits during year j at site i. The variance model 
assumes no linear trend is present.  
 
The linear mixed effects model was fit using the lme4 R package (Bates et al., 2014) and 
took the form: 
 
lmer(RESULT ~ 1  +  (1|SITE_ID)  +  (1|YEAR)  +  (1|SITE_ID:YEAR)) 
 
Other measures of precision 

Other useful indicators of a measurement’s precision and utility for status and trend 
monitoring include signal to noise ratio (S:N = σ2site/ σ2rep) , coefficient of variation (CV = 
100 σrep/�̅� ̅), residual standard deviation (σrep) and the ratio of residual standard deviation 
to the maximum potential range (Rgpot) of a measurement ( σrep/Rgpot) (Kaufmann et al., 
1999; Kaufmann et al., 2014a). 
 
The S:N compares the variance of the measurement across a regional sampling of streams 
(signal) with the variance estimated from repeat visit sampling (noise). The advantage of 
S:N is its relevance to many types of statistical analyses. Relatively low S:N (i.e., high noise 
relative to signal) reduces statistical power to detect differences among sites or groups of 
sites and limits the ability to detect trends. Noise also affects the amount of variance that 
can be explained by regression models. This also implies that noise compromises the ability 
to discern likely stressor-response relationships that could diagnose probable causes of 
impairment or potential management actions for recovery. Previous research indicates that 
S:N > 10 indicates negligible effects of noise, becoming minor through S:N of 6 and 
increasing to moderate as S:N reaches 2 (Kaufmann et al., 1999). As S:N approaches zero, 
noise becomes severely limiting and at 0, all variance is associated with noise. Measures of 
S:N within a survey are useful for identifying metrics with the greatest potential for 
discriminating among sites and detecting trends, but S:N may not be useful for comparison 
to surveys in other regions because the absolute range of a metric may not be the same 
among regions. 
 
The CV is a typical measure of precision used by researchers; however, this measure may 
be of limited use when making comparisons to other regional status and trend monitoring 
efforts due to differences in grand measurement means (�̅�) in each study area. 
 
The square-root of the repeat visit variance (σrep) is an absolute measure of precision and is 
equivalent to the pooled standard deviation of repeat measurements made within a given 
year and averaged over all sites and years. This is a useful way to compare the precision of 
methods used to measure the same metric using different field methods or crews. 
However, the magnitude of σrep varies among metrics and for a particular metric can vary 
among survey regions.  
 
To evaluate the utility of σrep/Rgpot as a measure of metric precision, σrep was standardized 
by dividing σrep by the range of observations within our survey (Rgobs, σrep/Rgobs) rather 
than using Rgpot as in Kaufmann et al. (2014a). We chose to use Rgobs because many of our 
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metrics were not scaled from 0 to 1 and we were primarily interested in precision 
measures specific to our study. Since we report σrep, anyone interested in calculating 
σrep/Rgpot can do so by assigning a value for of Rgpot for any particular metric.  
 
Kaufmann et al. (2014a) used an analysis of the minimum detectable difference (Dmin) for a 
range of Dmin/Rgpot to characterize the relative precision of σrep/Rgpot. Adapting the relative 
precision evaluation presented by Kaufmann et al. (2014a) to our study, metrics with 
σrep/Rgobs ≤ 0.052 would be considered to have relatively high precision, while metrics with 
σrep/Rgobs  ≥ 0.15 would have relatively low precision. To put these thresholds in context, 
Table 2 found in Kaufmann et al. (2014a) is adapted to show the relationship between 
different increments of relative minimum detectable differences and increments of 
σrep/Rgobs (Table 7). 
 

Table 7.  Calculated levels of relative precision required to detect (p < 0.05) specified minimum 
differences between mean metric values [adapted from Table 2 in Kaufmann et al. 
(2014a)]. 

 

Dmin/Rgobs 
Relative 
Precision Minimum Detectable Difference (p≤0.05) σrep/Rgobs 

1/20  = 0.050 High 2 observations differing by 1/20 of Rgobs are different 0.018 

1/10 = 0.100 High 2 observations differing by 1/10 of Rgobs are different 0.036 

1/9 = 0.111 High 10 streams evenly spanning Rgobs are all different 0.040 

1/7 = 0.143 High 8 streams evenly spanning Rgobs are all different 0.052 

1/6 = 0.167 Moderate 2 streams different by 1/6 of Rgobs are all different 0.060 

1/5 = 0.200 Moderate 6 streams evenly spanning Rgobs are all different 0.072 

1/4 = 0.250 Moderate 5 streams evenly spanning Rgobs are all different 0.090 

1/3 = 0.330 Moderate 4 streams evenly spanning Rgobs are all different 0.12 

1/2.4 = 0.416 Low 3 streams evenly spanning Rgobs are all different 0.15 

1/2 = 0.500 Low 3 streams evenly spanning Rgobs are all different 0.18 

1/1 = 1.000 Low 2 streams at extremities of Rgobs are barely discernible 0.36 

>1.000 Low 2 streams at min. and max. of Rgobs are not different >0.36 

Note: Dmin = minimum detectable difference, Rgobs = range of observation, σrep = repeat-visit or residual 
variance 

 

2.8.2 Status and Trends Assessment 

In addition to standard boxplots describing the median and interquartile range of selected 
metrics, we used cumulative distribution function analyses to extrapolate metric values 
over the target sample frame (Kincaid and Olsen, 2012). We focused these analyses on 
metrics with the highest precision. The methods used to assess status and trends are 
described in the following sections. 
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2.8.2.1 Status: Continuous and Categorical Analysis 

Cumulative distribution function (CDF) plots were used to quantitatively describe 
particular metrics extrapolated over the target sample frame (for example see Figure 5). 
The CDF describes the percentage of the target population that is less than or equal to each 
possible value of a metric (Kincaid and Olsen, 2012). The cumulative distribution plots 
(i.e., the CDF plots) developed in this study (and other studies based on probabilistic 
sampling designs - e.g., Stoddard et al., 2005; Merritt and Hartman, 2012) are more 
complicated than a standard CDF plot of a data set because sample weights (see Section 
2.2) must be included to account for unequal probability of sample site selection. 
 
 

 

Figure 5. Cumulative distribution function (CDF) plot for a hypothetical metric, including 95% 
confidence limits of CDF. 

 
A CDF plot for a particular target sample population sampled in a particular year 
establishes a baseline against which future surveys (using the same probabilistic design) 
can be compared. Change over time (or between subpopulations of the target sample 
frame) can be detected not only in some measure of central tendency such as the mean or 
median value of a particular metric, but in certain portions of the CDF via visual 
comparison of the two (or more) CDF plots. Depending on the expected response of a 
particular metric to environmental stressors or to restoration measures, the CDF will be 
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expected to shift to the left or right. Confidence intervals for each CDF provide a statistical 
basis for assessing change. The R package spsurvey (Kincaid and Olsen, 2013) was used to 
generate CDF plots for all metrics stratified by tier over the 2010-2013 sampling period. 
The Wald F test was used to identify statistically significant differences between CDFs 
(between years or between strata) based on the recommendation in Kincaid and Olsen 
(2012).  
 
In addition to providing complete information about the distribution of a particular metric, 
CDF plots can be readily transformed into a categorical analysis using thresholds 
established by regulatory standards (e.g., stream temperature not to exceed 16 oC), a 
reference threshold (e.g., volume of wood per unit of stream length indicative of properly 
functioning condition), or by some other established thresholds (e.g., good, fair and poor 
B-IBI scores). The categorical analysis results in an estimate of the percentage (and in the 
case of this study, the corresponding stream length) of the target population that is above 
or below (or within in the case of multiple thresholds) a particular categorical. The R 
package spsurvey (Kincaid and Olsen, 2013) was used to perform categorical analyses of 
selected metrics stratified by tier over the 2010-2013 sampling period.  
 
Because of the absence of categorical values for many of the metrics investigated in this 
project, only four categorical analyses were conducted as part of this study. Categorical 
analyses were conducted for the two biological metrics (B-IBI and F-IBI), one habitat 
metric (wood volume), and one temperature metric (7-day moving average of the daily 
maximum). The thresholds selected for use in each categorical analysis are provided in 
Table 8. Analyses were conducted to provide assessments of the relative proportion within 
each tier across multiple years (2010-2013), across tiers within each year (2010-2013) and 
across tiers for all years (2010-2013) combined. 
 
In addition to the help documents available from the Comprehensive R Archive Network 
(http://cran.r-project.org/), Nahorniak (2012) provided useful guidance on the 
development of R scripts to generate CDF plots and perform categorical analyses. 
 
  

http://cran.r-project.org/
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Table 8. Thresholds and associated categories used in the categorical analyses of biological 
and habitat metrics conducted as part of this study. 

 
Metric Poor Fair Good Reference 

B-IBI <40 >=40 and <60 >=60 1 

F-IBI <=10 >10 and <=15 >15 2 

     

Wood Volume (m3/100 m) < 28 >=28 and <=99 >99 3 

     

 Supporting Not-supporting   

7-DMax Temperature <=16 oC >16 oC  4 

     

1  Puget Sound Stream Benthos (http://pugetsoundstreambenthos.org/About-BIBI.aspx) 

2  Matzen and Berge (2008)     

3  Fox and Bolton (2007)     

4  Water Quality Standards for Surface Waters of the State of Washington, Chapter 173-201A WAC 

    (https://fortress.wa.gov/ecy/publications/SummaryPages/0610091.html)  

 

2.8.2.2 Trends 

Regional trends (i.e., mean trend across all WRIA 8 sites) were evaluated for each 
replicated metric (i.e., B-IBI and habitat metrics) by using a linear mixed effects model of 
the form:  
 
𝑌𝑖𝑗𝑘 =  𝜇 + 𝑆𝑖 + 𝑇𝑗 + 𝛽𝑗 + 𝑆𝑇𝑖𝑗 + 𝐼𝑖𝑗𝑘   

 
This model is similar to the model used to estimate the components of variance (see 
Section 2.8.1 above) with one additional parameter (βj) that represents the average slope 
or trend over all sampling sites (Urquhart et al., 1998; Anlauf et al., 2011; Urquhart, 2012). 
The remaining parameters are as defined in Section 2.8.1 above.  
 
The linear mixed effects model was fit using the lme4 R package (Bates et al., 2014) and 
took the form: 
 
lmer(RESULT ~ 1  + YEAR +  (1|SITE_ID)  +  (1|YEAR)  +  (1|SITE_ID:YEAR)) 
 
Following Anlauf et al. (2011), we used restricted maximum likelihood to estimate the 
variance components and based all hypothesis tests on the type III test of fixed effects with 
the Kenward-Roger method to estimate the degrees of freedom for the denominator using 
the lmerTest package in R (Kuznetsova et al., 2014). We report the mean trend (i.e., slope) 
for each metric (2010-2013) and the estimated statistical significance of the trend slope 
(i.e., p-value). 
 

http://pugetsoundstreambenthos.org/About-BIBI.aspx
https://fortress.wa.gov/ecy/publications/SummaryPages/0610091.html
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Because no replicated data were collected at the Sentinel sites, it is not possible to apply 
the model above to evaluate trends at Sentinel sites. In order to evaluate the mean trend at 
Sentinel sites for comparison to WRIA 8 trends, we modified the model to remove the 
Site:Year interaction term. Evaluation of trends at Sentinel sites was conducted only for 
those metrics that indicated statistically significant trends based on WRIA 8 sites. 

2.8.3 Stressor-Response Relationships 

Developing models that predict a biological response (e.g., B-IBI) to various biophysical 
stressors (e.g., land cover and habitat metrics) is a fundamental goal of ecology (Olden and 
Jackson, 2000; De’ath and Fabricius, 2000). There are at least two goals related to stressor-
response modeling: (1) improvement in the understanding of the various processes in 
space and time (including human-caused changes) that affect the biological condition of 
streams, and (2) development of statistical and/or mechanistic models to make predictions 
of ecological status at other locations or forecast future status (Olden and Jackson, 2000; 
Waite et al., 2010). Both of these goals are important for natural resource management.  
 
Improved understanding begins through construction of conceptual models, hypothesis 
testing, and model refinement (Austin, 2007). We adopted the conceptual model outlined 
by Waite et al. (2010) that is based on the hypothesis that landscape characteristics control 
stream hydrogeomorphology which in turn controls the baseline biological assemblages 
(Figure 6). This conceptual model assumes that abiotic factors (e.g., landscape character, 
watershed size, physical habitat) are the primary driver of stream biological condition and 
that biotic interactions (e.g., predation, competition for food resources), although present, 
are of secondary importance. Human-induced change in landscape characteristics 
(primarily clearing and grading for farming and development) and more intense land use 
are the primary drivers of stream biological alteration. These changes on the landscape 
often affect stream riparian zones that influence nutrient and organic matter inputs to 
streams and increase light input and heat loads. Landscape changes also result in 
alterations of sediment, nutrient and contaminant inputs to the stream and alter the 
magnitude and timing of stream flow. Other potential effects of increasing intensity of 
human-related activities in a watershed include complex changes in stream water quality 
due to increasing inputs of sediment, nutrients and contaminants. The resulting changes in 
the chemical and physical character of the stream result in alterations in stream biological 
communities that include loss of taxa intolerant to change and increases in the numbers of 
taxa tolerant to these changes. 
 
Because we measured a wide range of metrics in each of several stressor categories 
(i.e., land cover, habitat, temperature, and hydrology), a modeling approach was needed to 
minimize effects of metric redundancy within categories and reduce the chance of finding 
spurious relationships with response variables that arise when one attempts to mine large 
data sets to identify statistical relationships between stressors and response metrics 
(Olden and Jackson, 2000; Van Sickle, 2003).  
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Figure 6. Conceptual model relating the influence of land use on factors that affect stream 
biological condition (from Waite et al., 2010)). 

 
Note: Solid arrows indicate direct pathways and dashed lines indicate indirect pathways. Also, direction 

of response may be positive or negative even within on conceptual box. 

 

Instead of attempting to reduce the number of metrics for more detailed analysis using 
parametric statistical techniques followed by the development of parametric multiple 
linear regression models (MLR) (e.g., Keenan et al., 2010; Waite et al., 2010), we chose to 
use a completely non-parametric approach. Non-parametric methods are generally better 
suited to problems where the number of predictor variables exceeds the number of 
samples, interactions exist among variables, non-linear relationships occur, data are 
missing and variables do not satisfy requirements of parametric statistical approaches 
(De’ath, 2007; Waite et al., 2012). This is often the case for ecological data (De’ath and 
Fabricius, 2000) and is the case with our dataset.  
 
We considered and explored non-parametric modeling approaches such as classification 
regression trees (CART), random forests (RF) and boosted regression trees (BRT). Based 
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on our experience with these methods and the evaluation of these non-parametric 
modeling approaches and MLR conducted by Waite et al. (2012), we chose to develop BRT 
models. Waite et al. (2012) were able to develop MLR, CART, RF and BRT stressor-response 
models for two ecoregions in Oregon (including the Willamette Valley which is similar to 
the Puget Lowland ecoregion) and another in California. Although Waite et al. (2012) 
determined that the significant stressor-response relationships were generally linear 
(i.e., MLR performed well), BRT models showed significant improvement over MLR models 
for each region.  
 
We had some concern regarding the use of BRT with the relatively small number of sites 
we sampled (n=52). 10 May et al. (2015) indicated that regions with less than 75 sites would 
be less than ideal for BRT modeling, although they included regions with as few as 53 sites 
in their study. By including regions with smaller numbers of sites, they explicitly chose not 
to develop validated predictive models, which would require splitting the data into model 
development and validation data sets. The number of sites used to develop MLR, CART, RF 
and BRT models in the study by Waite et al. (2012) ranged from 55 to 148. They also did 
not split their data set and at least with respect to their MLR models (Waite et al., 2010) 
indicated that with further development they could be used to better understand causal 
linkages or predict biological conditions at unsampled sites. 
 
BRT and RF models are part of a group of statistical techniques built on the single CART 
models that average the results from multiple tree models. Unlike RF models where many 
different CART models are generated through random selection of subsets of the input 
data, BRT models are based on fitting the response to reweighted versions of the input data 
based on the fit to previous trees, resulting in performance improvements over RF models 
(De’ath, 2007). BRT and RF models also provide an ordered list of the importance of input 
variables and assessment of variable interactions. Plotting tools are also provided to 
visualize the effect of a specific explanatory variable on the response variable after 
accounting for the average effects of all other input variables. These partial dependence 
plots are especially useful for visualizing the non-linear interactions between any stressor 
and response metric. 
 
BRT models were developed using the dismo (Hijmans et al., 2014) and gbm (Ridgeway, 
2013) packages in R following guidance provided by Elith et al. (2008) and Elith and 
Leathwick (2014). Models were developed using a bag fraction of 0.75, a learning rate of 
0.001 and a tree complexity of 5. A tree complexity of 5 allows the assessment of up to 5-
way interactions among input variables. A bag fraction of 0.75 means that a random 
selection of 75 percent of the data is used each time a tree is developed. The learning rate 
affects the total number of trees needed to fit the model. Models were not pruned to find 
the most parsimonious set of predictor variables as in Waite et al. (2010; 2014) or May 
et al. (2015). This was due primarily to the added difficulty of evaluating model goodness of 
fit against model complexity in terms of the numbers of variables used (e.g., May et al., 
2015). Furthermore, Elith and Leathwick (2014) described a method to reduce model 

                                                        
10 Analysis of stressor-response relationships used data from the probabilistic survey design (N=50) plus the 
two ERR sites. Refer to Section 0 
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complexity, but indicated that their view was that a small data set (in their case n=1,000 
with 11 predictor variables) wouldn’t benefit from further simplification. 
 
The output from the BRT models is somewhat different than that of parametric linear 
regression models. Model results reported include the cross-validation coefficient of 
determination (CV R2), which gives an indication of the amount of variance in the response 
variable explained by the model. Cross-validation refers to the technique used to test the 
predictive capability of the model, which entails randomly partitioning the data into 
training (model fitting) and validation (testing) data sets. Variable relative importance 
(VRI) values and partial dependence plots can also be reported. VRI values are the 
proportion of explained variance that can be attributed to each independent variable. 
Partial dependence plots display the effect of a single predictor variable on the dependent 
variable after accounting for the average effects of all other variables. We reported VRI 
values and provided partial dependence plots of the six most import variables in each 
model as well as a scatter plot matrix of the same six variables including the response 
variable. The top six variables in any model always included variables that had a VRI value 
of 10 percent or more. 
 
A further complication of the BRT models that included hydrologic metrics was that the 
model specified above would not run successfully with the smaller set of sample sites. In 
these cases, Sentinel sites were included and the bag fraction was increased to 0.9, which 
allowed the models to run to completion. These modifications undoubtedly compromised 
the reliability of the CV R2 and comparability of the model results including hydrologic 
metrics to the other models and for generalizations to WRIA 8. 
 
In order to have a single set of consistent stressor and response inputs to BRT models, 
average values of metrics measured between 2010-2013 in all WRIA 8 study streams were 
used along with the single values of the land cover metrics. Sentinel sites were excluded 
from these analyses so that the results would be unequivocally relevant to WRIA 8, with 
the exception of models that included hydrologic metrics as mentioned above. 
 
The stressor-response analysis focused first on relating metrics in each stressor category to 
a response variable (here B-IBI or F-IBI) so as to identify metrics with the greatest 
potential relevance within a particular category. More complicated models were then 
developed by combining stressor categories.  
 
Note that in BRT models that considered land cover metrics, we included physical variables 
that are not stressors, but rather natural features of the watersheds (e.g., watershed area, 
elevation, slope). We included these metrics because it is important to understand if, and to 
what degree, natural landscape features influence B-IBI and F-IBI. Biological response 
metrics that are not sensitive to natural physical variables will be more precise measures of 
human disturbance. Biological metrics that are sensitive to natural physical variables might 
require some modification to minimize significant natural influences. 
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2.8.4 Trend Detection Power 

Here we will address the trend model introduced in Section 2.8.2.2 that can be used to 
evaluate regional or average trend over all sampling sites.   
 
Surveys such as the one documented in this report provide essential information needed to 
design effective and efficient monitoring programs. A major component of salmon recovery 
programs is investment in efforts designed to improve overall habitat conditions11 that 
sustain not only salmon, but also native aquatic and riparian biota. Two factors control the 
ability to detect consistent improvements in habitat conditions of biotic responses that 
result from these investments: (1) the magnitude of spatial and temporal variation of 
measured habitat metrics and (2) the design of the monitoring network (Larsen et al., 
2004). The first factor will be addressed through the analyses previously described in 
Section 2.8.1. The methods used to address the second factor are described here. 
 
Avoiding statistical error is critical to trend detection analyses. Of particular concern in any 
statistical analysis is the avoidance of Type I and Type II errors. These errors are illustrated 
in Table 9. Trend analysis Type I error is when the test falsely rejects the null hypothesis 
and one concludes that trend is present when none really exists. Type I errors can be 
controlled by the selection of the statistical significance level (p). In general, the lower the 
value of p used to determine statistical significance, the less likely Type I errors will occur. 
Typically, a significance level of <0.05 is selected to identify “statistically significant” 
trends. 
 

Table 9. Description of statistical trend testing errors. 

 

 Does a trend exist? 

Yes 

(H0 false) 

No 

(H0 true) 

Has a trend been 
detected? 

Yes 

(Reject H0) 
Power = 1-β 

Type I Error (α):  

False trend detected 
when none exists. 

No 

(Fail to reject H0) 

Type II Error (β):  

Failure to detect an 
existing trend due to 

weakness of the trend, 
weakness of the 

methodology, or the short 
length of the record. 

Probability = 1-α 

 
α = Probability (reject H0|H0 true) and 1 – β = Probability (reject H0|H0 false)  

 

                                                        
11 In this context, habitat conditions refer not only to conditions represented by the habitat metrics described 
above, but also other stream habitat attributes such as temperature and hydrology. 
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It is more difficult to avoid Type II errors. Trend test Type II errors occur when the 
statistical trend test does not suggest a trend, but a trend really exists. Type II errors (β) 
are related to the power (1-β) to reliably detect trends when they are present. Although 
there are no formal standards for power, generally a value of 0.8 (1-β; β=0.2) is a standard 
analogous to the use of a probability of avoiding a Type I error of 0.95 (1-α; α=0.05).   
 
As noted above, our survey design was based on an “always revisit” panel plan that consists 
of visiting the same fixed number of locations every year. The estimated variance 
components from Section 2.8.1 above were used to calculate trend detection power over a 
20-year monitoring period for hypothetical trends of 1, 2, and 3 percent per year for an 
“always revisit” panel plan for B-IBI and habitat metrics selected primarily based on the 
relatively most important habitat variables identified in the stressor response models. The 
calculations were performed based on the approach described by Urquhart (2012) using 
functions written in R provided by Tom Kincaid (personal communication, EPA Corvallis, 
8 January 2015). 
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3.0 RESULTS 

This section describes results of the four broad categories of statistical analyses identified 
above, i.e., (1) evaluation of the precision of replicated metrics (habitat and benthic 
macroinvertebrate metrics), (2) description of the status and trends of important habitat 
and biological community metrics, (3) exploration of relationships among metrics 
(e.g., land cover and benthic invertebrates, hydrology and fish, etc.), and (4) power analysis 
of the ability to reliably detect trends in selected metrics that included field replicated data. 
 
The statistical analysis of the survey design and the details of the sampling work conducted 
between 2010 and 2013 are documented in the first section below.12 

3.1 Survey Design Implementation 

Target streams for this project were: (1) wadeable, (2) perennial, (3) accessible to 
anadromous salmon, and (4) included at least one riffle for benthic macroinvertebrate 
collection. Of the 868 sites assessed through GIS analysis and field visits, 105 (12.1 percent 
of sites) were identified as target sites, and 763 (87.9 percent of sites) were classified as 
non-target (Table 10). Over half the points assessed as target sites (55/105) were not 
sampled for various reasons: 41 denied access by landowner (38.9 percent of sites), 4 
physically inaccessible (3.8 percent of sites), and 10 not sampled for other reasons (9.6 
percent of sites), including 2 sites that were located on the wrong tributary (see Section 
4.1.2 for a more complete explanation of this error).13 Of the 105 target sites assessed, 37 
(35.2 percent of sites) were classified as Tier 1, 35 (33.3 percent of sites) were Tier 2, and 
33 (31.4 percent) were Tier 3 reaches.  
 
The majority of the sites assessed were classified as non-target (763/868 or 88 percent). Of 
the non-target reaches, 514 (59 percent) were inaccessible to anadromous salmon. The 
majority of inaccessible streams in WRIA 8 occurred above natural barriers in the Upper 
Cedar River watershed.14 Other reasons for sites being classified as non-target were that 
the GIS points did not fall on a stream, the stream was non-wadeable or other reasons 
(Table 10).  
 
The total extent of mapped streams in WRIA 8 was 2,668 km (Table 11). Based on our GIS 
and field evaluation of 868 sites, the presumed amount of anadromous, wadeable stream 
length in Tiers 1, 2 and 3 was estimated at 111.78, 106.78, and 104.78 km for a total in 
WRIA 8 of 323.3 ± 0.3 km. This estimate includes sampled target stream sites and stream 
sites presumed to be targets that could not be verified primarily because of landowner   

                                                        
12 Note that a discussion of the results is presented in the subsequent Section 4.0. 
13 Data from these two locations were excluded from the calculations of survey weights and associated 
continuous and categorical analyses, but the data from these sites were included in all other analyses. 
14 The Landsburg diversion dam at mile 21 on the Cedar River, operated by Seattle Public Utilities to supply 
drinking water to the city of Seattle, has been passable to Chinook, coho and steelhead since 2003. This 
reestablished access to approximately 17 miles of mainstem and tributary stream habitat; the only barriers to 
Chinook, coho and steelhead in the upper watershed are natural ones.  
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Table 10. Stream sampling target assessment summary. 

 

Category N 
Estimated 

Percent 

Std 
Error 

Percent 

95% 
Confidence 

Interval 
 

Population 
Estimate 

(km) 

Population 
Std Error 

(km) 

95% 
Confidence 

Interval (km) 

Target Sampled 50 5.8 0.7 4.5-7.1 
 

154.1 17.4 119.9-188.2 

Target Presumed 55 6.4 0.7 5.0-7.7 
 

169.3 17.7 134.5-204.0 

Non Target 763 87.9 0.8 86.2-89.5 
 

2,344.7 22.3 2,300.1-2,388.4 

Total 868 100 0 100 
 2668 0.83 2,666.4-2,669.6 

 

Category: TARGET N 
Estimated 

Percent 

Std 
Error 

Percent 

95% 
Confidence 

Interval 
 

Population 
Estimate 

(km) 

Population 
Std Error 

(km) 

95% 
Confidence 

Interval (km) 

Target Sampled 50 47.7 4.2 39.5-55.8 
 

154.1 13.4 127.7-180.4 

Inaccessible 4 3.8 1.5 0.8-6.8 
 

12.3 4.9 2.7-21.9 

Denied Access 41 38.9 3.8 31.5-46.4 
 

125.6 12.3 101.8-149.9 

Unknown 8 7.7 2.0 3.9-11.5 
 

24.9 6.3 12.5-37.3 

Wrong Tributary 2 1.9 1.2 0.0-4.2 
 

6.2 3.8 0.0-13.7 

Total 105 100 0 100 
 

323.3 0.33 322.7-324.0 

    
  

  
 

Category: NON 
TARGET 

N 
Estimated 

Percent 

Std 
Error 

Percent 

95% 
Confidence 

Interval 
 

Population 
Estimate 

(km) 

Population 
Std Error 

(km) 

95% 
Confidence 

Interval (km) 

No Watercourse 134 17.7 1.1 15.5-19.8 
 

413.9 25.5 363.9-464.0 

Not Salmon Stream 514 67.4 1.2 65.2-69.7 
 

1,580.9 27.1 
1,527.8-
1,634.0 

Non Wadeable 91 11.8 0.8 10.3-13.2 
 

275.9 17.5 241.6-310.2 

Wetland 12 1.6 0.4 0.9-2.3 
 

36.6 8.5 20.0-53.2 

Ambiguous Location 2 0.3 0.2 0.0-0.6 
 

6.1 3.8 0.0-13.5 

Ditch_StandingWater 2 0.3 0.2 0.0-0.6 
 

6.1 3.6 0.0-13.1 

No Riffles 2 0.3 0.2 0.0-0.6 
 

6.4 3.9 0.0-14.0 

Culvert 4 0.5 0.2 0.1-1.0 
 

12.5 5.3 2.2-22.9 

Dry 2 0.3 0.2 0.0-0.6 
 

6.2 3.8 0.0-13.6 

Total 763 100 0 100 
 

2,344.7 0.82 
2,343.1-
2,346.3 

 
 
access denial. Because of the potential bias introduced primarily by the relatively high 
proportion of landowner access denials, our frame of inference is limited to the sampled 
stream reaches. One would have to assume that the stream sites where landowners would 
deny access are no different than streams where landowners would grant access in order 
to believe that inferences can be made for the entire target population estimate. Therefore, 
the sampled stream extent is a little less than half the assumed target stream extent (see 
Figure 7). The sampled amount of anadromous, wadeable stream length in Tiers 1, 2 and 3 
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was estimated at 60.4, 39.7, and 54.0 km for a total in WRIA 8 of 154.1 ± 17.4 km. Spatial 
weights for estimating the extent of sampled streams were calculated by tier and included 
adjustment for the over sample (Table 11).15 In summary, 50 sampling sites are assumed to 
represent 154.1 km of wadeable anadromous salmon bearing streams in WRIA 8. 
 

Table 11.  Summary of the size of the WRIA 8 stream network, presumed target frame, sample 
frame and estimated sample weights (km/site) by tier. 

 
Tier Mapped 

Streams 
(km) 

Target 
Streams 

(km) 

Sampled 
Streams 

(km) 

Sample 
Sites 

Weight 
(km/site) 

1 719 111.8 60.4 20 3.02 

2 1,260 106.8 39.7 13 3.05 

3 689 104.8 54.0 17 3.18 

Total 2,668 323.3 154.1 50 3.08 

 
 
 

 

Figure 7.  Pie chart showing the assessment of presumed target and sampled target sites in the 
WRIA 8 status and trends study. 

 
 

  

                                                        
15 Over sample sites are included in this GRTS design to account for frame errors, landowner denials, and 
physically inaccessible stream sites. 

Target 
Sampled

47.6%

Inaccessible
3.8%

Denied Access
39.0%

Unknown
7.6%

Wrong 
tributary

1.9%

Target Sampled

Inaccessible

Denied Access

Unknown

Wrong tributary
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3.1.1 Sampling Summary 

In 2010-2012, a total of 52 WRIA 8 sites were sampled for habitat, benthic invertebrates, 
and fish. In 2013, one site on Issaquah Creek (WAM06600-051507) could not be sampled 
because of active construction in the reach, so 51 sites were sampled (Table 12). The 
availability of flow and temperature data for each WRIA 8 site from 2010 to 2013 is also 
documented in Table 12. 
 
It was discovered that two of the WRIA 8 stream sampling sites were not located on the 
targeted stream reach as determined by the Washington Master Sample, but were 
erroneously located on an adjacent tributary. These sites were renamed from the originally 
targeted Washington Master Sample ID by changing the original sample ID prefix “WAM” to 
“ERR.” The revised site IDs became ERR06600-035863 for Piper’s Creek and ERR06600-
091291 for Little Bear Creek (Table 12). Data from these two locations were excluded from 
the calculations of survey weights and associated continuous and categorical analyses, but 
the data from these sites were included in all other analyses. 
 
King County conducted sampling at all five Sentinel sites from 2011 through 2013, 
including the collection of habitat, benthic macroinvertebrate, and fish data. In 2010, 
sampling was divided between King County and EPA as follows: Sampling at the Sentinel 
sites for habitat and stream benthic invertebrates was conducted by King County, with the 
exception of the Chuckanut Creek site which was sampled by EPA. In 2010, fish data were 
collected at Big Beef Creek by King County/USFWS and by EPA at the other four Sentinel 
sites (Table 12). The Glendale Creek site was the only Sentinel location where no flow or 
temperature data were collected during the study. The availability of flow and temperature 
data for the other Sentinel sites is documented in Table 12. 
  



Monitoring for Adaptive Management 

King County Science and Technical Support Section  44 April 2015 

 

Table 12. Sampling data summary, 2010-2013.  

 
Note:  An “x” denotes reaches sampled by King County for habitat, benthic macroinvertebrates and fish, 

except where noted. EPA indicates the site that was sampled by EPA in 2010 for habitat, benthic 
macroinvertebrates and fish. An “r” indicates that replicate habitat and benthic invertebrate 
sampling was conducted. Two sites (Site IDs with ERR06600-*) were not part of the GRTS frame. 

 
Creek Name Site ID 2010 2011 2012 2013 

Tier 1 

Bear WAM06600-013031 x x x r 

Bear WAM06600-017111 x x x x 

Bear WAM06600-036971 r a,b x a,b x a,b,c x a,b,c  

Bear WAM06600-057527 X x x a x c 

Bear (trib) WAM06600-111639 x a,b x x a x c 

Carey WAM06600-002259 x a,b r a,b x a,b,c x a,b,c  

Carey WAM06600-006355 x x x a x c 

Cottage WAM06600-076119 x a,b x a,b x a,b,c x a,b,c  

EF Issaquah WAM06600-039815 x a,b x a,b x a,b,c x a,b,c 

EF Issaquah WAM06600-041095 r x x c x c 

EF Issaquah WAM06600-082291 x x x c x c 

EF Issaquah WAM06600-108711 x x x c x c 

Holder WAM06600-098963 x x x c x c 

Issaquah WAM06600-035623 x x r c r c 

Issaquah WAM06600-047779 r r x c x c 

Issaquah WAM06600-051507 x x x c d 

Issaquah WAM06600-100519 x x r X 

Issaquah WAM06600-110035 x x x c x c 

Issaquah WAM06600-123207 x a,b x a,b x a,b,c x a,b,c 

Mackay WAM06600-122423 x x x c x c 

Total  20 20 20 19 

Tier 2 

Coal WAM06600-000391 x x x b,c x c 

EF Rock WAM06600-086867 x x x c x c 

Hotel WAM06600-083667 x x x c x c 

Kelsey WAM06600-038087 x x x b,c x a,b,c 

Kelsey WAM06600-080407 x a,b x a,b x a,b,c x a,b,c  

Little Bear ERR06600-091291 x b x a,b x b,c x c 

Little Bear WAM06600-023691 x a,b x x c x b,c 

North WAM06600-049499 x a,b x x c x c 

North WAM06600-067147 x a,b r a,b x a,b,c x c 

North WAM06600-126891 r x r x 

Rock WAM06600-027251 x x x c x c 

Sitka WAM06600-053755 x x x c x c 
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Creek Name Site ID 2010 2011 2012 2013 

Taylor WAM06600-115443 x a,b x a,b x a,b,c r a,b,c 

Webster WAM06600-022259 x a,b x a,b x a,b,c x a,b,c 

Williams WAM06600-015443 x x x c x c 

Total  15 15 15 15 

Tier 3 

Coal WAM06600-073831 x x x c r c 

Idlywood WAM06600-097975 x x r c x c 

Juanita WAM06600-083959 x a,b x a,b x a,b,c x a,b,c 

Lewis WAM06600-020391 x r x x c 

Lunds Gulch WAM06600-063051 r x x x c 

Lyon WAM06600-035963 x a,b x a,b x a,b,c x a,b,c 

Madsen WAM06600-092899 x x x c x c 

May WAM06600-081267 x b x a,b x a,b,c r a,b,c 

Perrinville WAM06600-083243 x x x x c 

Peter’s WAM06600-050295 x x f x b,c x a,b,c 

Piper's ERR06600-035863 x x x x c 

Piper's WAM06600-063831 x a,b r a,b x a,b,c x a,b,c 

Scriber WAM06600-015067 x a,b x a,b x a,b,c x a,b,c 

Swamp WAM06600-083131 x a,b x a,b x a,b,c x c 

Taylor (Seattle) WAM06600-065043 x a,b x a,b x a,b,c x c 

Tibbetts WAM06600-062567 x x x a,b,c x a,b,c 

Venema WAM06600-057739 x a,b x a,b x a,b,c x a,b,c 

Total  17 17 17 17 

Sentinel Sites 

Big Beef * WAM06600-001639 x a,b x a,b x a,b,c x a,b,c 

Chuckanut EPA06600-CHUC01 EPA e  x a,b x a,b,c x b 

Dewatto EPA06600-DEWA01 x e x b x b,c x a,b,c 

Glendale * WAM06600-299887 x e x x x 

Griffin SEN06600-GRIF09 x a,b,e x a,b x a,b,c x a,b,c 

Total  5 5 5 5 

Grand Total  57 57 57 56 

a Useable continuous flow data for flashiness metrics. 
b Useable continuous flow data for summer low flow metrics. 
c Continuous temperature site. 
d This location on Issaquah Creek was not sampled in 2013 due to construction activity at this site. 
e EPA conducted fish sampling at this site in 2010. 
 
* There may be some confusion regarding these site IDs. These site IDs are used in our database 
developed for this study. Ecology’s Environmental Information Management system uses EPA06600-
BEEF01 and EPA06600-GLEN01 as our site IDs and the IDs above are used for Ecology sampling 
events that have occurred at nearly the same locations. 
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3.2 Precision Analysis 

3.2.1 Habitat Metrics 

The relative contribution of the four components of variance for each habitat metric is 
summarized in Figure 8. The dominant source of variation in many of the habitat metrics 
was associated with variation across sites, which is to be expected given that the streams 
sampled included relatively undeveloped rural stream reaches to stream reaches in highly 
urbanized settings. Generally, habitat metrics with relatively higher contributions of site 
variance had relatively low residual variance (and vice versa), resulting in metrics with the 
highest S:N also having the highest contribution from site variance (Figure 8).  
 
The precision analysis identified 24 of the initial list of 38 metrics (see  
Table 2) with a S:N greater than 2.0 (Table 13 and Figure 8). Nine metrics had S:N greater 
than 10. These metrics represented measures of canopy character and density (PPN 
CanConif,  X DensioCenter, X DensioBank), substrate composition (PCT SandFines) and 
channel characteristics (ResPoolArea100, X TWDepth, SD TWDepth, X BFWidth and X 
BFDepth).  Fourteen metrics had very low S:N (i.e., <2.0). These metrics included substrate 
metrics (PCT GravelC, PCT GravelF, X Embed, SD Embed), relative bed stability (RBS, LRBS), 
channel metrics (PCT Pool, PCT PoolScour, SD PoolUnitDepth) and a wood metric (PCT 
Wood). 
 
A figure showing the same relative variance component contributions for the habitat 
metrics, but sorted by σrep/Rgobs presents a different picture of the relative precision of the 
habitat metrics (Figure 9). In this figure, high precision is generally associated with 
relatively low σrep and relatively high Rgobs that results from the wide range of habitat 
disturbance sampled across WRIA 8. Based on the criteria in Kaufmann et al. (2014a), 10 of 
the 38 metrics would be considered to have relatively high precision (i.e., σrep/Rgobs ≤0.052; 
Table 13 and Figure 9). These metrics represent channel characteristics (X TWDepth, SD 
TWDepth, X BFWidth, ResPoolArea100, X BFDepth), wood volume (LWDVolume100m, 
LWDPieces100m, LWDVolumeMSq) and canopy character and density (PPN CanConif, X 
DensioBank). All but three of the remaining metrics would be considered to have moderate 
precision (i.e., 0.052 > σrep/Rgobs < 0.15). The three metrics that would be considered to 
have poor precision (σrep/Rgobs ≥ 0.15) were PCT GravelF, PCT Pool and PCT PoolScour. 
 
Contrary to the findings of Kaufmann et al. (2014a), there was a relatively high correlation 
between natural log transformed S:N and σrep/Rgobs (Pearson r = -0.74, p<0.001). However, 
our data set did not have nearly the same geographic scope (contiguous U.S.). Consistent 
with Kaufmann et al. (2014a), low σrep/Rgobs did not guarantee high S:N, although all 
metrics classified as having high precision based on σrep/Rgobs had S:N greater than 2.0. S:N 
greater than 10 did not consistently correspond to metrics with high precision based on 
σrep/Rgobs. There were however a number of metrics with S:N greater than 10, that were 
classified as having moderate precision based on σrep/Rgobs, including X DensioCenter and 
PCT SandFines. 
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Figure 8. Relative magnitude of the four components of habitat metric variance (left) based on 
data collected from 50 randomly chosen stream sites in WRIA 8 (2010-2013), including 
replicate samples collected at 5 randomly chosen locations each year. Signal-to-Noise 
(S:N) for each metric also shown (right). 

 
Note: Metrics sorted by increasing S:N. See Table 2 for metric descriptions. 
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Figure 9. Relative magnitude of the four components of habitat metric variance (left) based on 
data collected from 50 randomly chosen stream sites in WRIA 8 (2010-2013), including 
replicate samples collected at 5 randomly chosen locations each year. σrep/Rgobs for 
each metric also shown (right). 

 
Note: Metrics sorted by decreasing σrep/Rgpot. See Table 2 for metric descriptions. 
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Table 13. Summary of habitat metric precision analysis. 

 
Metric MEAN CV σrep Rgobs σrep:Rgobs S:N 

BFWidth_BFDepth 11.5 0.10 1.13 20.4 0.056 5.5 

D50 11.8 0.49 5.78 81.4 0.071 2.9 

LRBS -2.11 -0.11 0.24 2.68 0.088 1.2 

LWDPieces100m 26.9 0.36 9.80 238.0 0.041 3.6 

LWDSiteVolume100m 33.5 0.60 20.20 576.2 0.035 2.1 

LWDVolumeMSq 0.067 0.47 0.03 1.3 0.025 4.2 

PCT Cobble 11.7 0.48 5.59 45.5 0.123 2.4 

PCT Fines 6.63 0.46 3.04 47.6 0.064 4.2 

PCT GravelC 26.6 0.32 8.44 66.23 0.127 0.93 

PCT GravelCx 42.3 0.25 10.67 82.7 0.129 2.1 

PCT GravelF 23.9 0.42 9.94 65.80 0.151 0.31 

PCT GravelFb 54.1 0.20 10.65 85.3 0.125 2.2 

PCT Pool 23.6 0.48 11.23 70.00 0.160 1.04 

PCT PoolScour 19.2 0.59 11.28 69.00 0.163 0.69 

PCT Sand 23.5 0.22 5.22 69.9 0.075 3.7 

PCT SandFines 30.2 0.14 4.22 73.6 0.057 11 

PCT Wood 2.60 0.54 1.39 12.12 0.115 0.80 

PPN CanConif 0.060 0.58 0.04 0.7 0.051 11 

PPN CanDecid 0.579 0.15 0.09 1.0 0.086 9.8 

PPN CanMixed 0.271 0.48 0.13 1.0 0.135 2.5 

PWP All 0.835 0.57 0.48 4.0 0.119 2.1 

PWP Path 0.153 1.00 0.15 1.09 0.140 0.95 

RBS 0.0112 0.61 0.01 0.08 0.091 0.47 

ResPoolArea100 11.2 0.18 2.07 45.0 0.046 22 

SD BFDepth 14.0 0.25 3.51 48.8 0.072 3.9 

SD BFWidth 1.33 0.26 0.35 3.40 0.104 1.7 

SD Embed 33.4 0.11 3.64 26.60 0.137 0.19 

SD EmbedCtr 27.5 0.17 4.55 39.70 0.115 0.63 

SD PoolUnitDepth 14.6 0.44 6.41 98.63 0.065 0.37 

SD TWDepth 13.4 0.10 1.37 37.1 0.037 31 

X BFDepth 52.2 0.10 5.23 115.8 0.045 16 

X BFWidth 5.98 0.07 0.44 13.3 0.033 44 

X DensioBank 94.5 0.02 2.05 49.2 0.042 11 

X DensioCenter 81.8 0.06 4.50 82.5 0.055 13 

X Embed 56.7 0.15 8.34 73.50 0.113 1.8 

X EmbedCtr 43.7 0.22 9.49 82.80 0.115 1.4 

X PoolUnitDepth 44.0 0.19 8.28 130.0 0.064 6.5 

X TWDepth 27.9 0.07 1.96 89.7 0.022 84 

Note: Metrics classified as having high precision based on σrep/Rgobs ≤0.052 are in bold. Those 
classified as having high precision based on S:N>10 are italicized. See Table 2 for metric 
descriptions. 
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3.2.2 B-IBI 

The relative contribution of the four components of variance to B-IBI is summarized in 
Figure 10. Consistent with the habitat metrics, the dominant source of variation was 
associated with variation across sites due to the gradient of development and habitat 
condition across the study area. The proportion of variance due to year-to-year variability 
across all sites was lowest. Residual and Site:Year interaction variance (σrep) were also 
relatively low compared to variance across sites.  B-IBI had S:N of 16.1 indicating relatively 
high precision and σrep/Rgobs of 0.067 that would classify B-IBI as having moderate 
precision  (Table 14 and Figure 10).  
 
 

 
 

Figure 10. Relative magnitude of the four components of B-IBI variance based on data collected 
from 50 randomly chosen stream sites in WRIA 8 (2010-2013), including replicate 
samples collected at 5 randomly chosen locations each year. 

 
 

Table 14. Summary of benthic macroinvertebrate precision analysis. 

 
Metric MEAN CV σrep Rgobs σrep:Rgobs S:N 

B-IBI 51.8 0.127 6.60 98 0.067 16.1 
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3.3 Status and Trends 

3.3.1 Status 

The ecological status (and condition for those metrics for which we have developed 
categorical thresholds) of WRIA 8 streams is summarized below by tier (Tiers 1, 2 and 3) 
for B-IBI, F-IBI, and habitat metrics representing instream wood (LWDSiteVolume100m), 
riparian canopy cover (PPN CanConif and X DensioBank), fine sediment (PCT SandFines), 
pools (ResPoolArea100) and water temperature (7DMax). The habitat categories of wood, 
canopy cover, fine sediment, and pools are targeted here because these are commonly 
considered to be important for salmon and other aquatic species, are often targeted in 
restoration activities, and are expected to respond to improved management practices 
(Larsen et al., 2004).  

3.3.1.1 B-IBI 

B-IBI scores in WRIA 8 streams ranged from 10.2 to 99.6 between 2010 and 2013. There 
was a fairly distinct pattern in the distribution of B-IBI across Tiers 1 through 3, with B-IBI 
in Tier 1 being generally the highest and Tier 3 scores lowest, with Tier 2 scores covering 
the range in Tier 1 and 3 scores (Figure 11). The range in B-IBI scores at the five Sentinel 
sites was variable among years, but generally higher than B-IBI observed in WRIA 8 Tier 3 
streams (Figure 11). 
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Figure 11. Box plots showing range of B-IBI scores in WRIA 8 Tier 1, 2 and 3 (T-1, T-2, T-3) and 
Sentinel (S) streams, 2010-2013. 

 
Comparisons of CDFs of B-IBI for 2010 to 2013 in Tier 1, 2 and 3 streams, reveals a similar 
pattern to that noted above with higher scores in Tier 1, lower scores in Tier 3 and the full 
range of scores in Tier 2 (Figure 12). Although the 95 percent confidence intervals 
generally overlap, there also appears to be a trend toward higher B-IBI scores, with 
qualitatively more apparent increases in B-IBI scores observed in 2013 in Tier 1 streams. 
Wald F paired comparison tests seem to bear this out, at least for trends in Tier 1 streams, 
with statistically significant (p<0.05) differences identified in all comparisons with the 
exception of differences between 2010 and 2011 and between 2012 and 2013 (Table 15). 
 
Except for a statistically significant difference in Tier 3 sites between 2010 and 2013, no 
statistically significant differences were noted for any other comparisons within Tiers 2 
or 3 (Table 15). 
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Table 15. Results of multiple comparison tests of B-IBI scores for Tiers 1 through 3, 2010-2013. 

 
Tier Comparison Wald F p-value 

Tier 1 2010 to 2011 1.68 0.20 

Tier 1 2010 to 2012 4.81 0.014 

Tier 1 2010 to 2013 4.29 0.022 

Tier 1 2011 to 2012 7.65 0.0018 

Tier 1 2011 to 2013 10.47 0.0003 

Tier 1 2012 to 2013 2.62 0.087 

    

Tier 2 2010 to 2011 0.93 0.41 

Tier 2 2010 to 2012 3.17 0.061 

Tier 2 2010 to 2013 3.02 0.068 

Tier 2 2011 to 2012 1.39 0.27 

Tier 2 2011 to 2013 0.44 0.65 

Tier 2 2012 to 2013 0.95 0.40 

    

Tier 3 2010 to 2011 2.76 0.079 

Tier 3 2010 to 2012 0.44 0.65 

Tier 3 2010 to 2013 6.12 0.0058 

Tier 3 2011 to 2012 0.80 0.46 

Tier 3 2011 to 2013 0.65 0.53 

Tier 3 2012 to 2013 2.62 0.089 

Note: Statistically significant tests (p<0.05) shown in bold. Paired comparison test p-values were not 
adjusted for multiple comparisons. 

 
Based on the thresholds in Table 8 (i.e., poor<40, fair >=40 and <60,good>=60), the B-IBI 
condition in WRIA 8 Tier 1, 2 and 3 streams varied somewhat from year to year and 
followed the pattern described above – a small portion of Tier 1 streams and a large 
portion of Tier 3 streams were in poor condition (Figure 12). An intermediate amount of 
Tier 2 streams were in poor condition. Conversely, a small proportion of Tier 3 streams and 
a major portion of Tier 1 streams were in good condition. An intermediate proportion of 
Tier 2 streams were in good condition (Figure 12). 
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Figure 12. Cumulative distribution function (CDF) plots (top) and categorical analysis bar plots for B-IBI, 2010-2013 for Tier 1, Tier 2 
and Tier 3. 
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3.3.1.2 F-IBI 

F-IBI scores in WRIA 8 streams ranged from 6 to 23 between 2010 and 2013. The pattern 
for F-IBI scores across Tiers 1 through 3, was similar to that observed for B-IBI.  Tier 1 
generally had the highest scores and Tier 3 had the lowest scores, with Tier 2 scores 
covering the range in Tier 1 and 3 scores (Figure 13). The range in F-IBI scores at the five 
Sentinel sites was variable among years, but generally higher scores than WRIA 8 Tier 2 
and 3 streams (Figure 13). 
 
However, based on the stressor-response analysis for F-IBI (see Section 3.4.2 below), we do 
not believe this multi-metric fish index, although developed and tested specifically for 
Puget Sound lowland streams, is a useful indicator for assessment of fish community health 
at this time. This is due to a previously unidentified confounding relationship between 
contributing basin area (or stream size) and F-IBI (see the discussion in Section 4.4.2 for 
more details on this issue). In general, F-IBI scores are more likely to be higher in larger 
streams with greater upstream contributing basin area. Tier 1 stream sites have less 
upstream development, but many of them tend to also be larger streams with larger 
upstream contributing watershed area, which result in a spurious pattern in F-IBI across 
tiers (i.e., a pattern more related to contributing basin area than the percent of upstream 
urbanization). 
 
Tier 1 streams are not only less developed; they also tend to include the mouths of some of 
the larger tributary basins (e.g., Issaquah and Bear-Evans creeks) suitable for Chinook 
spawning and rearing. The distribution of contributing basin area for each sampling site by 
tier is shown in Figure 14, which illustrates that the range in basin area is greatest for Tier 
1 streams with small basins representing lower order stream sites near basin headwaters 
and higher order stream sites near the basin mouths. Bankfull width, a measure of stream 
size closely related to watershed area (e.g., Faustini et al., 2009) reveals a pattern that is 
very similar to basin area, with Tier 1 streams having a larger range in bank full width (X 
BFWidth) (Figure 15). 
 
Further F-IBI status assessment results are presented for completeness below, but should 
viewed with the large caveat outlined above in mind. We note that previous studies and 
analyses conducted as part of this study (see Section 3.4.1Error! Reference source not 
ound.) have verified that B-IBI is not confounded by basin area (or stream size) within the 
range of wadeable streams sampled in our study. 
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Figure 13. Box plots showing range of F-IBI scores in WRIA 8 Tier 1, 2 and 3 (T-1, T-2, T-3) and 
Sentinel (S) streams, 2010-2013. 

 
Note: Refer to Section 4.4.2 for a discussion of the confounding effect of basin area and/or stream size 

on F-IBI scores. 
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Figure 14. Box plot showing sampling site contributing watershed area (in hectares) in WRIA 8 
Tier 1, 2 and 3 (T-1, T-2, T-3) and Sentinel (S) streams. 

 
 



Monitoring for Adaptive Management 

King County Science and Technical Support Section  58 April 2015 

 

Figure 15. Box plots showing range of bankfull width (X BFWidth, m) in WRIA 8 Tier 1, 2 and 3 (T-
1, T-2, T-3) and Sentinel (S) streams, 2010-2013. 

 
 
 
Comparisons of CDFs of F-IBI for 2010 to 2013 in Tier 1, 2 and 3 streams, reveals a similar 
pattern, with higher scores in Tier 1, lower scores in Tier 3 and nearly the full range of 
scores in Tier 2 (Figure 16). There did not appear to be a trend in F-IBI scores based on 
visual inspection of the F-IBI CDFs, although two paired comparison tests did indicate some 
statistically significant (p<0.05) differences in Tier 1 between years (i.e., 2010 to 2011 and 
2010 to 2012) (Table 16). No statistically significant differences were noted for any other 
comparisons within Tiers 2 or 3 (Table 16).  
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Table 16. Results of multiple comparison tests of F-IBI scores for Tiers 1 through 3, 2010-2013. 

 
Tier Comparison Wald F p-value 

Tier 1 2010 to 2011 4.34 0.021 

Tier 1 2010 to 2012 3.39 0.045 

Tier 1 2010 to 2013 1.95 0.158 

Tier 1 2011 to 2012 0.10 0.902 

Tier 1 2011 to 2013 2.37 0.109 

Tier 1 2012 to 2013 2.51 0.096 

    

Tier 2 2010 to 2011 0.140 0.870 

Tier 2 2010 to 2012 0.000 1.00 

Tier 2 2010 to 2013 0.140 0.870 

Tier 2 2011 to 2012 0.143 0.868 

Tier 2 2011 to 2013 0.145 0.866 

Tier 2 2012 to 2013 0.124 0.884 

    

Tier 3 2010 to 2011 0.844 0.440 

Tier 3 2010 to 2012 1.47 0.246 

Tier 3 2010 to 2013 0.383 0.6852 

Tier 3 2011 to 2012 1.33 0.278 

Tier 3 2011 to 2013 0.424 0.658 

Tier 3 2012 to 2013 0.350 0.708 

 

Note: Statistically significant tests (p<0.05) shown in bold. Paired comparison test p-values were not 
adjusted for multiple comparisons. . 

 

 
Based on the thresholds in Table 8 (i.e., poor<=10, fair >10 and <=15, good>15), the F-IBI 
condition in WRIA 8 Tier 1, 2 and 3 streams varied somewhat from year to year and 
followed the pattern described above – a small portion of Tier 1 streams and a large 
portion of Tier 3 streams were in poor condition (Figure 16). An intermediate amount of 
Tier 2 streams were in poor condition, but generally, Tier 2 stream condition was more 
similar to Tier 3 than Tier 1. Conversely, only a small portion of the Tier 3 stream length 
was in good condition, while the majority of Tier 1 streams were. An intermediate length of 
Tier 2 streams were in good condition (Figure 16). 
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Figure 16. Cumulative distribution function (CDF) plots (top) and categorical analysis bar plots for F-IBI, 2010-2013 for Tier 1, Tier 2 

and Tier 3.  
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Note:  Refer to Section 4.4.2 for a discussion of the confounding effect of basin area and/or stream size on F-IBI scores. 
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3.3.1.3 Wood Volume 

Wood volume (LWDSiteVolume100m) in WRIA 8 streams ranged from 0 to 576 m3/100 m 
between 2010 and 2013. Wood volume was generally low (< 100 m3/100 m) and similar 
across tiers, although much higher volumes were observed at single sites in some years 
(Figure 17). The range in wood volume at the five Sentinel sites was more variable among 
years, but generally similar to that observed in WRIA 8 streams (Figure 17). 
 
 

 

Figure 17. Box plots showing range of LWDSiteVolume100m (m
3
 per 100 m) in WRIA 8 Tier 1, 2 

and 3 (T-1, T-2, T-3) and Sentinel (S) streams, 2010-2013. 

 
Note: Value of 576 m

3
 per 100 m measured in Tier 3 in 2010 not shown. 

 
Comparisons of CDFs of wood volume for 2010 to 2013 in Tier 1, 2 and 3 streams, reveals a 
similar pattern, with relatively low values in all tiers with higher values observed in some 
years (Figure 18). There did not appear to be a trend in wood volume based on visual 
inspection of the CDFs, although a few paired comparison tests did indicate some 
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significant differences in tiers 2 and 3 between some years (i.e., 2011 to 2013 in Tier 2 and 
2010 to 2011 and 2011 to 2013 in Tier 3) (Table 17).  
 
 

Table 17. Results of multiple comparison tests of wood volume (m
3
/100 m) for Tiers 1 through 3, 

2010-2013. 

 
Tier Comparison Wald F p-value 

Tier 1 2010 to 2011 0.38 0.69 

Tier 1 2010 to 2012 0.39 0.68 

Tier 1 2010 to 2013 0.24 0.79 

Tier 1 2011 to 2012 0.40 0.67 

Tier 1 2011 to 2013 1.21 0.31 

Tier 1 2012 to 2013 1.01 0.38 

    

Tier 2 2010 to 2011 0.96 0.40 

Tier 2 2010 to 2012 1.54 0.24 

Tier 2 2010 to 2013 2.43 0.11 

Tier 2 2011 to 2012 3.04 0.068 

Tier 2 2011 to 2013 4.66 0.020 

Tier 2 2012 to 2013 0.76 0.48 

    

Tier 3 2010 to 2011 4.31 0.022 

Tier 3 2010 to 2012 1.21 0.31 

Tier 3 2010 to 2013 0.09 0.92 

Tier 3 2011 to 2012 1.87 0.17 

Tier 3 2011 to 2013 4.20 0.024 

Tier 3 2012 to 2013 1.68 0.20 

Note: Statistically significant tests (p<0.05) shown in bold. Paired comparison test p-values were not 
adjusted for multiple comparisons. 

 

 
Over half of the WRIA 8 stream lengths in each of the three tiers was consistently in poor 
condition with respect to wood volume (poor <28, fair >=28 and <=99, good >99 m3 per 
100 m), with the exception of Tier 2 streams sampled in 2013 (Figure 18). Conversely, very 
little of the stream length in Tier 1, 2 or 3 streams was in good condition (Figure 18). In 
fact, none of the stream length in Tier 3 streams sampled in 2012 or 2013 were classified 
as in good condition. 
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Figure 18. Cumulative distribution function (CDF) plots (top) and categorical analysis bar plots for wood volume, 2010-2013 for Tier 1, 
Tier 2 and Tier 3. 
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3.3.1.4 Riparian Canopy Cover 

The proportion of riparian coniferous canopy (PPN CanConif) in WRIA 8 streams ranged 
from 0 to 0.682 between 2010 and 2013. PPN CanConif was generally highest in Tier 2 
streams, somewhat lower in Tier 1 streams and lowest in Tier 3 and Sentinel streams 
(Figure 19).  

 

Figure 19. Box plots showing range of PPN CanConif (fraction) in WRIA 8 Tier 1, 2 and 3 (T-1, T-
2, T-3) and Sentinel (S) streams, 2010-2013. 

 
Comparisons of CDFs of PPN CanConif for 2010 to 2013 in Tier 1, 2 and 3 streams, revealed 
a similar pattern, with lowest range of values in Tier 3 with higher values observed in Tiers 
1 and 2 (Figure 20). There did not appear to be a trend in PPN CanConif based on visual 
inspection of the CDFs and no paired comparison tests indicated any significant differences 
between years for any tiers.  
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Figure 20. Cumulative distribution function (CDF) plots for PPN CanConif (fraction), 2010-2013 
for Tier 1, Tier 2 and Tier 3. 
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The average riparian canopy density along the sampling site banks (X DensioBank) in 
WRIA 8 streams ranged from 50.8 to 100 percent between 2010 and 2013. X DensioBank 
was generally highest in Tier 3 streams and somewhat lower in Tier 1 and 2 streams 
(Figure 21). X DensioBank in Sentinel streams was also generally lower than in Tier 3 
streams and similar to X DensioBank in Tier 1 streams (Figure 21). 
 
 
 

 

Figure 21. Box plots showing range of X DensioBank (percent) in WRIA 8 Tier 1, 2 and 3 (T-1, T-2, 
T-3) and Sentinel (S) streams, 2010-2013. 

 
 
Comparisons of CDFs of X DensioBank for 2010 to 2013 in Tier 1, 2 and 3 streams, revealed 
a similar pattern, with lower values typical in Tier 1 with higher values observed in Tiers 2 
and 3 (Figure 22). There did not appear to be a trend in X DensioBank based on visual 
inspection of the CDFs and no paired comparison tests indicated any significant differences 
between years for any tiers.  
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Figure 22. Cumulative distribution function (CDF) plots for X DensioBank, 2010-2013 for Tier 1, 
Tier 2 and Tier 3. 
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It is perhaps somewhat surprising that the lowest X DensioBank values were observed in 
Tier 1 streams. As noted above, some of the widest streams occurred in Tier 1, but X 
DensioBank should not be significantly affected by stream width. Nonetheless, there does 
seem to be some tendency for the wider Tier 1 streams to have lower values of X 
DensioBank (Figure 23). However, the widest Tier 1 stream sampling sites also tended to 
be near the mouths of larger streams, which also tended to be located in or near cities. For 
example, the lowest mean value of X DensioBank (56.4 percent) was found at the most 
downstream site on Issaquah Creek within the city limits of Issaquah. 
 

 
 

Figure 23. Scatter plot showing average (2010-2013) X BFWidth versus X DensioBank in WRIA 8 
Tier 1, 2 and 3 (T-1, T-2, T-3) and Sentinel (S) streams. 

 

3.3.1.5 Fine Sediment 

The percent of fine stream sediment (represented by PCT SandFines) in WRIA 8 streams 
ranged from 2.2 to 75.8 percent between 2010 and 2013. The range of PCT SandFines was 
generally similar in Tier 1, 2 and 3 streams (Figure 24). PCT SandFines in Sentinel streams 
was typically lower than in Tier 1, 2 or 3 WRIA 8 streams (Figure 24). 
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Figure 24. Box plots showing range of PCT SandFines (percent) in WRIA 8 Tier 1, 2 and 3 (T-1, T-
2, T-3) and Sentinel (S) streams, 2010-2013. 

 
Comparisons of CDFs of PCT SandFines for 2010 to 2013 in Tier 1, 2 and 3 streams, 
revealed a similar pattern, with a similar distribution of values in Tier 1, 2 and 3 streams 
(Figure 25). There did not appear to be a trend in PCT SandFines based on visual inspection 
of the CDFs and no paired comparison tests indicated any significant differences between 
years for any tiers.  
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Figure 25. Cumulative distribution function (CDF) plots for PCT SandFines, 2010-2013 for Tier 1, 
Tier 2 and Tier 3. 
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3.3.1.6 Pools 

The residual pool area (ResPoolArea100) in WRIA 8 streams ranged from 0.3 to 45.3 m2 
per 100 m between 2010 and 2013. The distribution of ResPoolArea100 across tiers 
generally indicated a gradient of higher ResPoolArea100 in Tier 1, somewhat lower in Tier 
2 and lowest in Tier 3 (Figure 26). ResPoolArea100 in Sentinel streams was generally 
similar to Tier 1 and 2 streams (Figure 26). 
 
 

 

Figure 26. Box plots showing range of ResPoolArea100 (m
2
 per 100 m) in WRIA 8 Tier 1, 2 and 3 

(T-1, T-2, T-3) and Sentinel (S) streams, 2010-2013. 

 
 
Comparisons of CDFs of ResPoolArea100 for 2010 to 2013 in Tier 1, 2 and 3 streams, 
revealed a similar pattern, with a gradient in the distribution of ResPoolArea100 from Tier 
1 to Tier 3, with a tendency to higher residual pool area in Tier 1 and lower in Tier 3 
(Figure 27). There did not appear to be a trend in ResPoolArea100 based on visual 
inspection of the CDFs and no paired comparison tests indicated any significant differences 
between years for any tiers.  
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Figure 27. Cumulative distribution function (CDF) plots for ResPoolArea100, 2010-2013 for Tier 1, 
Tier 2 and Tier 3. 
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3.3.1.7 Temperature (7DMax) 

7DMax in WRIA 8 streams ranged from 13.7 to 23 oC between 2012 and 2013. The range in 
7DMax was similar across Tiers 1, 2 and 3 and 7DMax at the Sentinel sites was generally 
lower (Figure 28).  

 

Figure 28. Box plots showing range of 7DMax (
o
C) in WRIA 8 Tier 1, 2 and 3 (T-1, T-2, T-3) and 

Sentinel (S) streams, 2010-2013. 

 
Comparisons of CDFs of 7DMax for 2012 and 2013 in Tier 1, 2 and 3 streams, reveals a 
similar pattern, with a relatively similar range of values in all tiers (Figure 29). No 
statistically significant differences were detected between years in any tier (Table 18).  
 

Table 18. Results of multiple comparison tests of 7DMax (
o
C) for Tiers 1 through 3, 2010-2013. 

 
Tier Comparison Wald F p-value 

Tier 1 2012 to 2013 0.26 0.775 

Tier 2 2012 to 2013 0.80 0.46 

Tier 3 2012 to 2013 2.97 0.067 

Note: Paired comparison test p-values were not adjusted for multiple comparisons. 
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Over 80 percent of the Tier 1 stream length and more than 60 percent of the streams in 
Tiers 2 and 3 were classified as not-supporting cold water salmonid habitat based on the 
threshold in Table 8 (i.e., 7DMax was greater than 16 oC) (Figure 29).  
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Figure 29. Cumulative distribution function (CDF) plots (top) and categorical analysis bar plots for 7DMax, 2010-2013 for Tier 1, Tier 2 
and Tier 3. 
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3.3.2 Trends 

Trends (2010-2013) in ecological status as measured by B-IBI and habitat metrics are 
summarized here.   

3.3.2.1 B-IBI 

The regional (WRIA 8) trend in B-IBI was statistically significant (p = 0.02) (Table 19). The 
trend was positive with a rate of change of 3.6 B-IBI points per year over the 2010-2013 
monitoring period (Table 19). Application of the trend model to the ten component metric 
scores indicated that the trend in B-IBI was due primarily to upward trends in richness 
scores; specifically Plecoptera, Tricoptera, long-lived taxa and overall taxa richness scores 
(Table 19).. The overall mean trend at the five Sentinel sites was not statistically significant 
(trend = -0.78; p = 0.79). 
 

Table 19.  Summary of linear mixed effects model trend test results for B-IBI measured at WRIA 
8 sites (2010-2013).  

 
Metric Trend p-value 

B-IBI 3.6 0.02 

Component metrics 

Total Taxa Richness 0.45 0.04 

Ephemeroptera Taxa Richness 0.01 0.97 

Plecoptera Taxa Richness 0.43 0.04 

Trichoptera Taxa Richness 0.43 0.04 

Intolerant Taxa Richness 0.17 0.13 

Clinger Taxa Richness and Percent 0.39 0.07 

Long-lived Taxa Richness 0.53 0.04 

Percent Tolerant 0.08 0.75 

Percent Predator 0.51 0.21 

Percent Dominance 0.55 0.06 

Note: Statistically significant trends (p<0.05) shown in bold. 

 

3.3.2.2 Aquatic and Riparian Habitat 

There was only one statistically significant regional trend in the stream habitat metrics – 
PCT PoolScour (p = 0.04) (Table 20). The trend was positive with a rate of change of 4.5 
percentage points per year over the 2010-2013 monitoring period (Table 20). The overall 
mean trend at the five Sentinel sites was not statistically significant (trend = -0.34; p = 
0.86). 
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Table 20. Summary of linear mixed effects model trend test results for stream habitat metrics 
measured at WRIA 8 sites (2010-2013).  

 
Metric Trend p-value 

D50 0.1 0.95 

LRBS 0.1 0.38 

LWDPieces100m -3.4 0.35 

LWDSiteVolume100m 0.2 0.96 

LWDVolumeMSq 0.0 0.73 

PCT Cobble -0.8 0.18 

PCT Fines -1.7 0.50 

PCT GravelC 1.7 0.25 

PCT GravelCx 0.9 0.59 

PCT GravelF -0.5 0.46 

PCT GravelFb -0.2 0.86 

PCT Pool 3.5 0.08 

PCT PoolScour 4.5 0.04 

PCT Sand 2.1 0.18 

PCT SandFines 0.3 0.80 

PCT Wood -0.6 0.19 

PPN CanConif 0.01 0.39 

PPN CanDecid 0.003 0.87 

PPN CanMixed -0.003 0.89 

PWP All -0.1 0.21 

PWP Path -0.04 0.06 

RBS 0.001 0.20 

ResPoolArea100 0.4 0.14 

SD BFDepth -0.3 0.41 

SD BFWidth -0.01 0.63 

SD Embed -0.2 0.90 

SD EmbedCtr -0.4 0.71 

SD PoolUnitDepth 1.5 0.28 

SD TWDepth 0.6 0.10 

X BFDepth -1.7 0.17 

X BFWidth -0.01 0.88 

BFWidth_BFDepth 0.3 0.12 

X DensioBank 0.7 0.12 

X DensioCenter 0.5 0.25 

X Embed -0.5 0.91 

X EmbedCtr -0.4 0.94 

X PoolUnitDepth 2.0 0.14 

X TWDepth 0.2 0.71 

Note: Statistically significant tests (p<0.05) shown in bold. 
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3.4 Stressor-Response Relationships 

3.4.1 B-IBI 

3.4.1.1 B-IBI vs Land Cover 

The BRT model explained about 94 percent of the variance in B-IBI (Table 21). The six most 
important variables in the model in order of importance were PCT Urban, POP Dens, RD 
Dens, Elev mean, PCT Imp, and PCT Forest (Table 21, see Table 3 for land cover metric 
descriptions). PCT Urban was by far the most important variable (48 percent) compared to 
POP Dens, the second most important variable (18 percent) (Table 21). Approximately 
linear relationships between B-IBI and the six relatively most important BRT variables are 
evident in the matrix scatterplot as is the highly interrelated nature of the land cover 
metrics (Figure 30).  
 
The partial dependence plots for the same six metrics illustrate the non-linear response of 
B-IBI to these stressor metrics – in particular to the relatively most important variables 
PCT Urban and POP Dens (Figure 31). The negative response of B-IBI to PCT Urban in the 
model is stepped, with small changes in B-IBI occurring as PCT Urban reaches about 30 
percent with a large decrease in B-IBI associated with the change in PCT Urban from 30 to 
40 percent. A second stepped response occurred near a PCT Urban value of 70 percent. The 
non-linear response in POP Dens was an initially steep negative response as POP Dens 
increased from the lowest value to a density of about 600 people per km2 followed by no 
further reduction in B-IBI beyond that level of population density. Non-linear responses 
were also present in the less important of the six variables, including a negative non-linear 
response to RD dens, a positive non-linear response to Elev mean and smaller negative 
non-linear response to PCT Imp (Figure 31). 
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Table 21. Summary of boosted regression tree (BRT) results for B-IBI versus stressor 
categories and groups of stressor categories. 

 
Model (n = number of sites included in model) / six most important model variables 
(variable relative importance in percent) 

Cross 
Validation 

 R2 

B-IBI ~ Land Cover (n=52)  

     PCT Urban (48), POP Dens (18), RD Dens (11), Elev mean (6), PCT Imp (6), PCT Forest (3) 0.94 

B-IBI ~ Habitat (n=52)  

     PWP All (22), D50 (14), X DensioCenter (13), X BFWidth (8), X Embed (5), PCTFines (4) 0.24 

B-IBI ~ Temperature (n=48)  

     MinT (65), DielRange (9), X7DMax (9), MeanT (6), X1DMax (5), DaysGT17p5 (4) 0.64 

B-IBI ~ Hydrology (n=28)  

     High Pulse Duration (58), High Pulse Count (25), R-B Index (12), Flow Reversals (2), High  
     Pulse Range (2), TQ Mean (1) 

0.51 

B-IBI ~ Land Cover + Habitat (n=52)  

     PCT Urban (47), POP Dens (21), RD Dens (12), Elev mean (7), PCT Imp (5), PWP All (4) 0.88 

B-IBI ~ Land Cover + Habitat + Temperature (n=48)  

     PCT Urban (46), POP Dens (24), RD Dens (12), Elev mean (5), PWP All (4), PCT Imp (3) 0.91 

B-IBI ~ Land Cover + Habitat + Temperature + Hydrology (n=28)  

     PCT Urban (51), POP Dens (22), PWP All (11), High Pulse Duration (4), PCT Imp (4), RD 
     Dens (4) 

0.88 

B-IBI ~ Habitat + Temperature + Hydrology (n=28)  

     High Pulse Duration (55), PWP All (19), High Pulse Count (19), R-B Index (4), X BFWidth  
     (2), MinT (0.1) 

0.93 

 
Note: The Cross Validation (CV) coefficient of determination (R

2
) or CV R

2
 results in red italics are 

intended to highlight that these models include hydrologic metrics, which require the inclusion of 
Sentinel Sites and an increase in the BRT model bag fraction from 0.75 to 0.9. 
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Figure 30. Scatterplot matrix of B-IBI versus six most important land cover metrics identified in 
the boosted regression tree (BRT) model. 
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Figure 31. Partial dependence plots of the six most relatively important land cover metrics in the 
boosted regression tree (BRT) model of B-IBI (y-axis=fitted function of B-IBI) based on 
the effect of individual metrics with the response of all other metrics removed. 

 

Note: Variables shown in order of importance from left to right beginning with PCT Urban. The 
proportion of variance explained by each variable is given by the percentage value below each 
plot. The fitted line within each plot shows the influence of the variable upon the dependent 
variable with all other variables held constant. The x-axes show the range of the predictor 
variable across all sites. The ‘fitted-function’ on the y-axis is the centered response metric value 
centered on zero.  
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3.4.1.2 B-IBI vs Habitat 

The BRT model explained about 24 percent of the variance in B-IBI (Table 21). The six most 
important variables in the model in order of importance were PWP All, D50, X 
DensioCenter, X BFWidth, X Embed, and PCT Fines (Table 21, see  
Table 2 for habitat metric descriptions). The lack of clear linear relationships between 
B-IBI and these variables is evident in the scatterplot matrix (Figure 32).  
 
The partial dependence plots for the same six metrics further illustrate the non-linear 
response of B-IBI to these stressor metrics – in particular to the relatively most important 
variables PWP All and D50 (Figure 33). The negative response of B-IBI to PWP ALL in the 
model is stepped, with a small decline as PWP All increases to about 1.0 followed by a rapid 
decline between 1.0 and about 1.5 and then leveling off thereafter. Non-linear responses 
were also evident in the less important of the six variables, particularly D50, X 
DensioCenter, X BFWidth and X Embed (Figure 33). 
 

 

Figure 32. Scatterplot matrix of B-IBI versus six most important habitat metrics identified in the 
boosted regression tree (BRT) model. 
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Figure 33. Partial dependence plots of the six most relatively important habitat metrics in the 
boosted regression tree (BRT) model of B-IBI (y-axis=fitted function of B-IBI) based on 
the effect of individual metrics with the response of all other metrics removed. 

 

Note:  Variables shown in order of importance from left to right beginning with PWP All. The proportion 
of variance explained by each variable is given by the percentage value below each plot. The 
fitted line within each plot shows the influence of the variable upon the dependent variable with all 
other variables held constant. The x-axes show the range of the predictor variable across all 
sites. The ‘fitted-function’ on the y-axis is the centered response metric value centered on zero. 
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3.4.1.3 B-IBI vs Temperature 

The BRT model explained about 64 percent of the variance in B-IBI (Table 21). The six most 
important variables in the model in order of importance were MinT, DielRange, X7DMax, 
MeanT, X1DMax and DaysGT17p5 (Table 21, see Table 6 for a description of temperature 
metrics). MinT was by far the relatively most important variable (65 percent) compared to 
DielRange, the second most important variable (9 percent) (Table 21). The lack of clear 
linear relationships between B-IBI and these variables, with the possible exception of MinT, 
is evident in the matrix scatterplot (Figure 34). The scatterplot also illustrates the high 
degree of correlation among these temperature metrics, particularly among MeanT, 
X1DMax and X7DMax (Figure 34). The partial dependence plot for the same six metrics 
illustrates the particularly non-linear response of B-IBI to MinT (Figure 35). The negative 
response of B-IBI to MinT in the model is stepped, with no decline in B-IBI until MinT 
reaches 11 oC followed by a steep decline from 11 to a little over 12 oC and then leveling out 
thereafter.  
 

 

Figure 34. Scatterplot matrix of B-IBI versus six most important temperature metrics identified in 
the boosted regression tree (BRT) model. 
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Figure 35. Partial dependence plots of the six most relatively important temperature metrics in 
the boosted regression tree (BRT) model of B-IBI (y-axis=fitted function of B-IBI) 
based on the effect of individual metrics with the response of all other metrics 
removed. 

 

Note: Variables shown in order of importance from left to right beginning with MinT. The proportion of 
variance explained by each variable is given by the percentage value below each plot. The fitted 
line within each plot shows the influence of the variable upon the dependent variable with all other 
variables held constant. The x-axes show the range of the predictor variable across all sites. The 
‘fitted-function’ on the y-axis is the centered response metric value centered on zero. 
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3.4.1.4 B-IBI vs Hydrology 

The BRT model explained about 51 percent of the variance in B-IBI (Table 21). The six most 
important variables in the model in order of importance were High Pulse Duration, High 
Pulse Count, R-B Index, Flow Reversals, High Pulse Range and TQ mean (Table 21, see 
Table 5 for a description of the hydrologic metrics). High Pulse Duration was by far the 
relatively most important variable (58 percent) compared to High Pulse Count, the second 
most important variable (25 percent) (Table 21). The relatively non-linear relationships 
between B-IBI and these variables are evident in the matrix scatterplot (Figure 34). The 
scatterplot also illustrates the high degree of correlation among these hydrologic metrics, 
particularly between High Pulse Count and R-B Index (Figure 34). The partial dependence 
plot for the same six metrics illustrates the particularly non-linear response of B-IBI to 
High Pulse Duration, High Pulse Count and R-B Index (Figure 37). The positive response of 
B-IBI to High Pulse Duration in the model is stepped, with no decline in B-IBI until High 
Pulse Duration reaches 3 days followed by a steep increase from 3 to a little over 13 days 
and then leveling out thereafter (Figure 37). Stepped negative responses were found for 
High Pulse Count and High Pulse Duration (Figure 37). For High Pulse Count there is little 
response in B-IBI until near 13 followed by a steep decline from a High Pulse Count of 13 to 
about 15 and then leveling off thereafter (Figure 37). 
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Figure 36. Scatterplot matrix of B-IBI versus six most important hydrologic metrics identified in 
the boosted regression tree (BRT) model. 
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Figure 37. Partial dependence plots of the six most relatively important hydrologic metrics in the 
boosted regression tree (BRT) model of B-IBI (y-axis=fitted function of B-IBI) based on 
the effect of individual metrics with the response of all other metrics removed. 

 

Note: Variables shown in order of importance from left to right beginning with High Pulse Duration. The 
proportion of variance explained by each variable is given by the percentage value below each 
plot. The fitted line within each plot shows the influence of the variable upon the dependent 
variable with all other variables held constant. The x-axes show the range of the predictor 
variable across all sites. The ‘fitted-function’ on the y-axis is the centered response metric value 
centered on zero. 
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3.4.1.5 Multiple Stressor Category B-IBI Models 

Land cover and Habitat: The BRT model with just these two categories of variables 
explained about 88 percent of the variance in B-IBI (Table 21). The six most important 
variables in the model in order of importance were PCT Urban, POP Dens, RD Dens, Elev 
mean, PCT Imp and PWP All (Table 21). PCT Urban was by far the relatively most 
important variable (47 percent) compared to POP Dens, the second most important 
variable (21 percent) (Table 21). The only habitat variable to appear in the top six had the 
lowest relative importance (4 percent).  
 
Land cover, Habitat and Temperature: The BRT model explained about 91 percent of the 
variance in B-IBI (Table 21). The six most important variables in the model in order of 
importance were PCT Urban, POP Dens, RD Dens, Elev mean, PWP All and PCT Imp (Table 
21). PCT Urban was by far the relatively most important variable (46 percent) compared to 
POP Dens, the second most important variable (24 percent) (Table 21). The only habitat 
variable to appear in the top six had the next to lowest relative importance (4 percent). No 
temperature metrics appeared in the list of the six most important variables; DielRange 
was the 7th most important variable (1 percent). 
 
Land cover, Habitat, Temperature and Hydrology: The BRT model explained about 91 
percent of the variance in B-IBI (Table 21). The six most important variables in the model 
in order of importance were PCT Urban, POP Dens, PWP All, High Pulse Duration, PCT Imp 
and RD Dens (Table 21). PCT Urban was by far the relatively most important variable (51 
percent) compared to POP Dens, the second most important variable (22 percent) (Table 
21). The list of six most important variables included one habitat metric (PWP All) and one 
hydrologic metric (High Pulse Duration) in addition to the four land cover metrics. No 
temperature metrics appeared in the list of the six most important variables; MinT was the 
10th most important variable (<1 percent). 
 
Habitat, Temperature and Hydrology: The BRT model explained about 93 percent of the 
variance in B-IBI (Table 21). The six most important variables in the model in order of 
importance were High Pulse Duration, PWP All, High Pulse Count, R-B Index, X BFWidth 
and MinT (Table 21). High Pulse Duration was by far the relatively most important variable 
(55 percent) compared to PWP All, the second most important variable (19 percent) (Table 
21).  

3.4.2 F-IBI 

3.4.2.1 F-IBI vs Land Cover 

The BRT model explained about 84 percent of the variance in F-IBI (Table 22). The six most 
important variables in the model in order of importance were WA ha, PCT Shrub, PCT 
PATCH, Rd xings dens, PCT Urban, and POP Dens (Table 22, see Table 3 for a description of 
land cover metrics). WA ha was by far the relatively most important variable (62 percent) 
compared to PCT Shrub, the second most important variable (14 percent) (Table 22). 
Relatively non-linear relationships between F-IBI and the six relatively most important 
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BRT variables are evident in the matrix scatterplot (Figure 38). The partial dependence 
plot for the same six metrics illustrates the non-linear response of F-IBI to these stressor 
metrics – in particular to the relatively most important variables WA ha and PCT Shrub 
(Figure 39). The positive response of F-IBI to WA ha in the model indicates a steep increase 
in F-IBI as watershed size increases to about 1,000 ha and then levels off. The positive non-
linear response of F-IBI to PCT Shrub was stepped with the increase from low to high F-IBI 
scores occurring over a range of PCT Shrub of 2 to 4 percent. Non-linear responses were 
also present in the less important of the six variables, including a positive non-linear 
response to PCT PATCH (Figure 39). 
 

Table 22. Summary of boosted regression tree (BRT) results for F-IBI versus stressor 
categories and groups of stressor categories. 

  

Model (n = number of sites included in model) / six most important model variables 
(variable relative importance in percent) 

Cross 
Validation 

R2 

F-IBI ~ Land Cover (n=52)  

WA ha (62), PCT Shrub (14), PCT PATCH (10), Rd xings dens (2), PCT Urban (2), POP 
Dens (2) 

0.84 

F-IBI ~ Habitat (n=52)  

X BFWidth (42), X TWDepth (7), X PoolUnitDepth (7), ResPoolArea100 (5), X 
DensioCenter (5), PWP All (4) 

0.77 

F-IBI ~ Temperature (n=48)  

MeanT (34), DielRange (27), X7DMax (13), DaysGT16 (10), MinT (9), DaysGT17p5 (5) 0.50 

F-IBI ~ Hydrology (n=28)  

Low Pulse Duration (32), X30dLow (32), High Pulse Duration (19), Flow Reversals (11), 
X7dLow (6), High Pulse Range (0.4) 

0.57 

F-IBI ~ Land Cover + Habitat (n=52)  

WA ha (36), X BFWidth (28), PCT Shrub (13), X PoolUnitDepth (11), PCT PATCH (8), X 
TWDepth (5) 

0.79 

F-IBI ~ Land Cover + Habitat + Temperature (n=48)  

WA ha (31), X BFWidth (26), PCT Shrub (14), X PoolUnitDepth (9), PCT PATCH (6), 
MeanT (4) 

0.78 

F-IBI ~ Land Cover + Habitat + Temperature + Hydrology (n=28)  

X BFWidth (56), X7DMax (12), High Pulse Duration (5), X30dLow (5), PCT_Shrub (5), 
DielRange (4) 

0.66 

F-IBI ~ Habitat + Temperature + Hydrology (n=28)  

X BFWidth (64), X7DMax (13), High Pulse Duration (7), X30dLow (5), DielRange (4), Low 
Pulse Duration (3) 

0.94 

 
Note: The Cross Validation (CV) coefficient of determination (R

2
) or CV R

2
 results in red italics are 

intended to highlight that these models include hydrologic metrics, which require the inclusion of 
Sentinel Sites and an increase in the BRT model bag fraction from 0.75 to 0.9. 
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Figure 38. Scatterplot matrix of F-IBI versus six most important land cover metrics identified in 
the boosted regression tree (BRT) model. 
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Figure 39. Partial dependence plots of the six most relatively important land cover metrics in the 
boosted regression tree (BRT) model of F-IBI (y-axis=fitted function of F-IBI) based on 
the effect of individual metrics with the response of all other metrics removed. 

 

Note:  Variables shown in order of importance from left to right beginning with WA ha. The proportion of 
variance explained by each variable is given by the percentage value below each plot. The fitted 
line within each plot shows the influence of the variable upon the dependent variable with all other 
variables held constant. The x-axes show the range of the predictor variable across all sites. The 
‘fitted-function’ on the y-axis is the centered response metric value centered on zero. 
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3.4.2.2 F-IBI vs Habitat 

The BRT model explained about 77 percent of the variance in F-IBI (Table 22). The six most 
important variables in the model in order of importance were X BFWidth, X TWDepth, X 
PoolUnitDepth, ResPoolArea100, X DensioCenter, and PWP All (Table 22, see  
Table 2 for a description of habitat metrics). X BFWidth was by far the relatively most 
important variable (42 percent) compared to X TWDepth, the second most important 
variable (7 percent) (Table 22). The lack of clear linear relationships between F-IBI and 
these variables is evident in the matrix scatterplot (Figure 40). The partial dependence plot 
for the same six metrics illustrates the non-linear response of F-IBI to these stressor 
metrics – in particular to the relatively most important variable X BFWidth (Figure 41). The 
positive response of F-IBI to X BFWidth in the model is stepped, with the step change from 
low to high F-IBI occurring between X BFWidth values of 5 and 6 m (Figure 41). 
 

 

Figure 40. Scatterplot matrix of F-IBI versus six most important habitat metrics identified in the 
boosted regression tree (BRT) model. 
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Figure 41. Partial dependence plots of the six most relatively important habitat metrics in the 
boosted regression tree (BRT) model of F-IBI (y-axis=fitted function of F-IBI) based on 
the effect of individual metrics with the response of all other metrics removed. 

 

Note: Variables shown in order of importance from left to right beginning with X BFWidth. The 
proportion of variance explained by each variable is given by the percentage value below each 
plot. The fitted line within each plot shows the influence of the variable upon the dependent 
variable with all other variables held constant. The x-axes show the range of the predictor 
variable across all sites. The ‘fitted-function’ on the y-axis is the centered response metric value 
centered on zero. 
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3.4.2.3 F-IBI vs Temperature 

The BRT model explained about 50 percent of the variance in F-IBI (Table 22). The six most 
important variables in the model in order of importance were MeanT, DielRange, X7DMax, 
DaysGT16, MinT and DaysGT17p5 (Table 22, see Table 6 for a description of temperature 
metrics). The lack of clear linear relationships between F-IBI and these variables is evident 
in the matrix scatterplot (Figure 42). The scatterplots also illustrate again the high degree 
of correlation among these temperature metrics, particularly between MeanT and X7DMax 
(Figure 42). The partial dependence plot for the same six metrics illustrates the 
particularly non-linear response of F-IBI to these temperature metrics (Figure 43). As an 
example, the positive response of F-IBI to MeanT in the model is stepped, with a sharp 
increase in F-IBI between 14 and 15 oC (Figure 43).  
 
 

 

Figure 42. Scatterplot matrix of F-IBI versus six most important temperature metrics identified in 
the boosted regression tree (BRT) model. 
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Figure 43. Partial dependence plots of the six most relatively important temperature metrics in 
the boosted regression tree (BRT) model of F-IBI (y-axis=fitted function of F-IBI) based 
on the effect of individual metrics with the response of all other metrics removed. 

 

Note: Variables shown in order of importance from left to right beginning with MeanT. The proportion of 
variance explained by each variable is given by the percentage value below each plot. The fitted 
line within each plot shows the influence of the variable upon the dependent variable with all other 
variables held constant. The x-axes show the range of the predictor variable across all sites. The 
‘fitted-function’ on the y-axis is the centered response metric value centered on zero. 
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3.4.2.4 F-IBI vs Hydrology 

The BRT model explained about 57 percent of the variance in F-IBI (Table 22). The six most 
important variables in the model in order of importance were Low Pulse Duration, 
X30dLow, High Pulse Duration, Flow Reversals, X7dLow and High Pulse Range (Table 22, 
see Table 5 for a description of the hydrologic metrics). Low Pulse Duration and X30dLow 
were ranked equally important (32 percent) and relatively more important than the next 
highest ranked variable – High Pulse Duration (19 percent) (Table 22). The relatively non-
linear relationships between F-IBI and these variables are evident in the matrix scatterplot 
(Figure 44). The scatterplot also illustrates the high degree of correlation among these 
hydrologic metrics, particularly between X7dLow and X30dLow (Figure 44). The partial 
dependence plot for the same six metrics illustrates the particularly non-linear response of 
F-IBI to these metrics (Figure 45). The positive response of F-IBI to Low Pulse Duration in 
the model is stepped, with no decline in F-IBI until Low Pulse Duration reaches about 15 
days followed by a steep increase from 15 to 20 days and then leveling out thereafter 
(Figure 45). Stepped positive responses were found for X30dLow and High Pulse Duration 
and negative stepped response was found for Flow Reversals (Figure 45).  
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Figure 44. Scatterplot matrix of F-IBI versus six most important hydrologic metrics identified in 
the boosted regression tree (BRT) model. 
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Figure 45. Partial dependence plots of the six most relatively important hydrologic metrics in the 
boosted regression tree (BRT) model of F-IBI (y-axis=fitted function of F-IBI) based on 
the effect of individual metrics with the response of all other metrics removed. 

 

Note: Variables shown in order of importance from left to right beginning with Low Pulse Duration. The 
proportion of variance explained by each variable is given by the percentage value below each 
plot. The fitted line within each plot shows the influence of the variable upon the dependent 
variable with all other variables held constant. The x-axes show the range of the predictor 
variable across all sites. The ‘fitted-function’ on the y-axis is the centered response metric value 
centered on zero. 
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3.4.2.5 Multiple Stressor Category F-IBI Models 

Land cover and Habitat: The BRT model with just these two categories of variables 
explained about 79 percent of the variance in F-IBI (Table 22). The six most important 
variables in the model in order of importance were WA ha, X BFWidth, PCT Shrub, X 
PoolUnitDepth, PCT PATCH and X TWDepth (Table 22). WA ha and X BFWidth were nearly 
equally as important (36 vs 28 percent) followed by PCT Shrub at 13 percent (Table 22). 
The only land cover variable to appear in the top six most important variables had the 
highest relative importance.  
 
Land cover, Habitat and Temperature: The BRT model explained about 78 percent of the 
variance in F-IBI (Table 22). The six most important variables in the model in order of 
importance were WA ha, X BFWidth, PCT Shrub, X PoolUnitDepth, PCT PATCH and MeanT 
(Table 22). WA ha and X BFWidth were again nearly equally as important (31 vs 26 
percent) followed by PCT Shrub at 14 percent (Table 22).  
 
Land cover, Habitat, Temperature and Hydrology: The BRT model explained about 66 
percent of the variance in F-IBI (Table 22). The six most important variables in the model 
in order of importance were X BFWidth, X7DMax, High Pulse Duration, X30dLow, PCT 
Shrub and DielRange (Table 22). ). X BFWidth was by far the relatively most important 
variable (56 percent) compared to X7DMax, the second most important variable 
(12 percent) (Table 22). WA ha did not appear in the list off the top six relatively most 
important variables; WA ha was the 7th most important variable (3 percent). 
 
Habitat, Temperature and Hydrology: The BRT model explained about 94 percent of the 
variance in F-IBI (Table 22). The six most important variables in the model in order of 
importance were X BFWidth, X7DMax, High Pulse Duration, X30dLow, DielRange and Low 
Pulse Duration (Table 22). X BFWidth was by far the relatively most important variable 
(64 percent) compared to X7DMax, the second most important variable (13 percent) (Table 
22).  
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3.5 Trend Detection Power 

Based on the status and trends and stressor response results presented above, we selected 
several metrics for trend detection power analysis. These metrics were chosen because 
they included replicate field samples and were used in the status evaluation above (B-IBI, 
LWDSiteVolume100m, PCT SandFines, ResPoolArea100) or were identified as relatively 
important variables that explained the variance in B-IBI scores in WRIA 8 (PWP All, D50 
and X DensioCenter). 
 
Based on the estimated component variances for B-IBI and this study’s repeat visit design 
for 50 sample sites, the power to detect a 1, 2 or 3 percent change in the overall mean B-IBI 
score of 52 is presented in Figure 46. For the smallest incremental change in B-IBI scores (1 
percent per year) a power of 0.8 is not reached until near the end of a 20-year sampling 
period. Trend detection power increases substantially over time for the other two 
hypothesized rates of change, reaching 0.8 in about 12 to 13 years for a rate of change of 2 
percent and in about 9 to 10 years for a 3 percent rate of change. Although it is not 
addressed explicitly here, it should be noted that these power curves have a certain degree 
of uncertainty as the variance estimates are just that – estimates (Skalski, 2012) and we are 
assuming no serial or spatial correlation across time or sites. 
 

 

Figure 46. Plot illustrating the power to detect a 1, 2 or 3 percent change (average trend) in B-IBI 
scores over a 20-yr period based on a repeat visit sampling design of 50 random 
tessellation stratified sites across WRIA 8. 

 
Based on the estimated components of variance for LWDSiteVolume100m, the power to 
detect a 1, 2 or 3 percent change in the overall mean of LWDSiteVolume100m of 33.5 
m3/100 m is presented in Figure 47. For the smaller incremental changes in 
LWDSiteVolume100m (1 and 2 percent per year), a power of 0.8 is not reached by the end 
of a 20-yr sampling period. Trend detection power increases substantially over time for the 
rate of change of 3 percent reaching 0.8 in about 17 to 18 years.  
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Figure 47. Plot illustrating the power to detect a 1, 2 or 3 percent change (average trend) in 
LWDSiteVolume100m over a 20-yr period based on a repeat visit sampling design of 
50 random tessellation stratified sites across WRIA 8. 

 
Based on the estimated components of variance for PCT SandFines, the power to detect a 1, 
2 or 3 percent change in the overall mean of PCT SandFines of 30.2 percent is presented in 
Figure 48. For a 1 percent change in PCT SandFines, a power of 0.8 is not reached until year 
16 or 17. Trend detection power increases substantially over time for the rate of change of 
2 and 3 percent reaching 0.8 in about 11 and 8 years, respectively.  
 

 

Figure 48. Plot illustrating the power to detect a 1, 2 or 3 percent change (average trend) in PCT 
SandFines over a 20-yr period based on a repeat visit sampling design of 50 random 
tessellation stratified sites across WRIA 8. 
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The power curves for ResPoolArea100 were very similar to those for PCT SandFines. Based 
on the components of variance for PCT SandFines, the power to detect a 1, 2 or 3 percent 
change in the overall mean of 11.2 m2 is presented in Figure 49. For a hypothetical rate of 
change of 1 percent per year, a power of 0.8 is not reached until year 14. Trend detection 
power for a 2 percent change reaches a power of 0.8 in about 8 to 9 years. For a 3 percent 
change, a power of 0.8 is reached in 7 years.  
 
 

 

Figure 49. Plot illustrating the power to detect a 1, 2 or 3 percent change (average trend) in 
ResPoolArea100 over a 20-yr period based on a repeat visit sampling design of 50 
random tessellation stratified sites across WRIA 8. 

 
The power curves for PWP All were very similar to those for LWDSiteVolume100m. Based 
on the components of variance for PWP All, the power to detect a 1, 2 or 3 percent change 
in the overall mean of 0.84 is presented in Figure 50. For hypothetical rates of change of 1 
and 2 percent per year, a power of 0.8 is not reached by the end of the 20-yr sampling 
period. Trend detection power for a 3 percent change does reach a power of 0.8 in about 17 
to 18 years.  
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Figure 50. Plot illustrating the power to detect a 1, 2 or 3 percent change (average trend) in PWP 
All over a 20-yr period based on a repeat visit sampling design of 50 random 
tessellation stratified sites across WRIA 8. 

 
The power curves for D50 were similar to those for B-IBI.  Based on the estimate 
components of variance for D50, the power to detect a 1, 2 or 3 percent change in the 
overall mean of 11.8 is presented in Figure 51. For the smallest incremental change in D50 
(1 percent per year), a power of 0.8 is not reached by the end of a 20-yr sampling period. 
Trend detection power increases substantially over time for the other two hypothesized 
rates of change reaching 0.8 in about 15 years for a rate of change of 2 percent and in about 
11 to 12 years for a 3 percent rate of change. 
 

 

Figure 51. Plot illustrating the power to detect a 1, 2 or 3 percent change (average trend) in D50 
over a 20-yr period based on a repeat visit sampling design of 50 random tessellation 
stratified sites across WRIA 8. 
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Based on the estimated components of variance for X DensioCenter, the power to detect a 
1, 2 or 3 percent change in the overall mean of 81.8 percent is presented in Figure 52. Note 
that for all three incremental rates of change in X DensioCenter, a power of 0.8 is reached in 
two to three years.  
 

 

Figure 52. Plot illustrating the power to detect a 1, 2 or 3 percent change (average trend) in X 
DensioCenter over a 20-yr period based on a repeat visit sampling design of 50 
random tessellation stratified sites across WRIA 8. 
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4.0 DISCUSSION 

This section of the report discusses the results in the context of the project purposes and 
management questions described in Section 1. The primary purpose of this project was to 
assess the condition of stream and riparian habitat along wadeable salmon streams in the 
WRIA 8 watershed, in order to inform adaptive management as part of the WRIA 8 Chinook 
Salmon Conservation Plan. A secondary purpose was to investigate relationships between 
land cover, hydrology, habitat, and biological assemblages in the watershed along an 
urbanization gradient.  

4.1 Survey Design Implementation 

We used an “always revisit” sampling approach, visiting the same locations every year for 
four years (see Section 2.8.4). Because the survey design was spatially-balanced and 
probabilistic, it is possible to extrapolate the results to the sampled target stream 
population. This type of survey design has been used successfully in the state of 
Washington (Merritt and Hartman, 2012) and nationally (Kaufmann et al., 2014b). The 
approach chosen was known to be relatively powerful statistically, minimized the chance of 
bias, and allowed for extrapolation. However, at least two possible sources of bias (target 
population bias and selection bias) were present in our implementation of the survey 
design. 

4.1.1 Target Population Bias 

Ideally, the sampled population fully represents the population of interest. However, if 
some planned locations are not sampled, bias may be introduced. In our study, nearly 39 
percent of the sites we initially identified as target reaches were not sampled due to lack of 
landowner permission. Landowner access is sometimes problematic along small streams, 
especially in heavily populated areas in WRIA 8, because small streams are often on private 
property. It may require the permission of many separate landowners to survey a single 
contiguous 150-meter reach. This inability to sample on private property may introduce 
bias toward sampling reaches in public ownership, where permission is generally given – 
and where habitat conditions might be different than in reaches running through private 
property. Of the 50 reaches sampled in WRIA 8, 32 (62 percent) were in public ownership. 
We cannot rule out the possibility of bias in our sample. Therefore, in our extrapolations 
we limited our frame of inference to the sampled stream extent rather than the assumed 
target stream extent.  

4.1.2 Selection Bias 

In two cases, ambiguous placement of the sample points on the map (equidistant between 
two tributaries) resulted in the survey team sampling the wrong reach. One case was in a 
Tier 2 area (tributary to Little Bear Creek) and one in a Tier 3 area (tributary to Piper’s 
Creek). These errors were random and represented only a small proportion of the sites 
sampled. We chose to include the survey results from those tributaries in examinations of 
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stressor-response relationships, though we excluded them from the calculations of survey 
weights and associated continuous and categorical analyses. 

4.2 Precision Analysis 

The precision analysis confirmed that B-IBI developed on the 0-100 scale (King County, 
2014a) has relatively high precision with a S:N of 16.1 and a σrep/Rgobs of 0.067. Based on 
data collected at over 700 replicated sites throughout the Puget Sound lowlands, King 
County (2014b) estimated a B-IBI S:N of about 10.8. Compared to the other metrics with 
replicated measurements, only a few physical channel habitat features that could be 
consistently measured (e.g., X TWDepth, X BFWidth, ResPoolArea100m) had substantially 
higher S:N or lower σrep/Rgobs.  
 
The precision analysis confirms findings of other studies of habitat metric precision. For 
example, Scholz and Booth (2001) concluded that measures of riparian canopy, bank 
erosion and hardening and in-stream large woody debris would provide meaningful 
habitat measures. They considered that well trained field staff could also provide useful 
measurements of channel gradient, substrate composition and pools. We did not measure 
bank erosion/hardening and did not include channel gradient in our study (although it was 
measured in the field). However, we did find that canopy measurement (X DensioBank and 
X DensioCenter), substrate (PCT SandFines), pools (ResPoolArea100) and wood 
(LWDPieces100m, LWDSiteVolume100m, LWDVolumeMSq) had relatively high precision 
based on either S:N or σrep/Rgobs.  
 
Also of potential interest is how our survey precision compares to other surveys (e.g. 
Whitacre et al., 2007; Roper et al., 2010); in particular to the Puget Sound Status and 
Trends survey (Merritt and Hartman, 2012) in which our study was nested and with which 
we shared protocols. A complete comparison was not possible, because only ten habitat 
metrics had reported S:N and σrep results from both studies (Table 23). However, the 
precision values reported by Merritt and Hartman (2012) were generally for the metrics 
with the greatest precision and included many metrics already highlighted in this report as 
having relatively high precision and biological relevance. Although the absolute values of 
S:N were different, both studies were consistent in identifying X TWDepth, X BFWidth, and 
SD TWDepth as having high precision (S:N >10). This was also true for precision as 
measured by σrep:Rgobs (<0.052) using the maximum Rgobs between the two studies (Table 
23). Three other metrics had consistently lower precision (S:N <5) (LWDPieces100m, X 
Embed and PCT Pool), although LWDPieces100m was somewhat equivocal based on 
σrep:Rgobs (0.041 in our study). The remaining four metrics (PCT SandFines, X DensioBank, X 
PoolUnitDepth, PCT Fines) were not consistently classified  as having high precision based 
on S:N with S:N values greater than 10 depending on the study. X PoolUnitDepth and PCT 
Fines were consistently classified as having high precision based on σrep:Rgobs, while PCT 
SandFines and X DensioBank were not (Table 23). 
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Table 23. Comparison of survey precision for selected habitat metrics between this study and 
the initial 2009 Puget Sound Status and Trends survey (Merritt and Hartman, 2012). 

 
 King Co Ecology King Co Ecology King Co Ecology King Co Ecology 

Metric S:N σrep Rgobs σrep:max(Rgobs) 

X TWDepth (cm) 84 159 2.0 1.7 89.7 254 0.008 0.007 

X BFWidth (m) 44 1,629 0.44 0.76 13.3 145.9 0.003 0.005 

SD TWDepth (cm) 31 158 1.4 1.0 37.1 84.8 0.016 0.012 

PCT SandFines (%) a 11 9.0 4.2 7.1 73.6 89.8 0.047 0.079 

X DensioBank (%) a 11 2.1 2.0 7.0 49.2 64.7 0.032 0.108 

X PoolUnitDepth 
(cm) 

6.5 40 8.3 9.4 130 323 0.026 0.029 

PCT Fines (%) a 4.2 44 3.0 1.7 47.62 84.5 0.036 0.020 

LWDPieces100m 
(#/100 m) 

3.6 3.8 9.8 14.2 238 92.7 0.041 0.060 

X Embed (%) a 1.8 3.7 8.3 11.3 73.5 84.3 0.099 0.134 

PCT Pool (%) 1.0 3.5 11.2 14.4 70.0 100 0.112 0.144 
a
 Merritt and Hartman (2012) indicate that these metrics were arcsine square-root transformed before S:N 

was estimated. However, their reported residual error values do not appear to be based on transformed 
data. 

 
Other metrics in our study (i.e., F-IBI, temperature and hydrology) were not replicated so 
we were not able to directly estimate their residual variance. In lieu of replicated data, it 
may be possible to derive estimates from other studies that might aid in the identification 
of metrics with high precision that would best discriminate differences among sites 
(status) and to focus long-term monitoring (trend) efforts. 
 
Future efforts, particularly ones that include the potential for scaling up watershed scale 
studies such as ours to regional or state levels, should also direct resources to increasing 
the consistency and compatibility of measured stream metrics with other similar study 
efforts. For example, watershed-scale status and trends studies based on the Ecology 
Master Sample have the potential to be combined with Ecology’s regional and state-wide 
status and trends monitoring effort (Cusimano et al., 2006; Larsen et al., 2008; Roper et al., 
2010). Such a scaling-up of monitoring data has the potential to maximize the benefits of 
limited monitoring dollars by increasing the statistical power and scale of assessments 
(Larsen et al., 2007; Roper et al., 2010). In our study, our field crews were trained annually 
prior to the field season by Ecology, together with Ecology crews. At a minimum, measures 
to increase consistency and compatibility of monitoring data will require efforts to 
compare results from field teams within any particular monitoring agency and between 
agency teams that aim to share data (Roper et al., 2010). 
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4.3 Status and Trends 

4.3.1 Status 

Our spatially balanced probabilistic sampling design allowed us to quantify the status 
(condition) of Tier 1, 2 and 3 salmon streams in WRIA 8 for a number of metrics. These 
metrics provided an assessment of overall biological condition of these streams (based on 
B-IBI) and an assessment of habitat conditions considered important to ecosystem health. 
As a whole, the data collected have established a baseline to which future measurements 
can be compared. 
 
Generally, B-IBI condition was good in Tier 1 streams. The relative proportion of stream 
kilometers in good condition decreased from Tier 1 to Tier 3 streams with Tier 3 streams 
predominantly in poor condition. This is consistent with what would be expected given the 
level of development in these watersheds: Tier 1 streams are generally found in rural areas, 
while Tier 2 streams are both inside and outside the UGA, and Tier 3 streams are 
predominantly found in the most urbanized areas.  
 
The two habitat condition metrics with regionally recognized thresholds that we assessed, 
large wood volume (LWDSiteVolume100m) and maximum July-August 7-day moving 
average of the daily maximum temperature (7DMax), were predominantly poor across all 
tiers compared to regional standards. The poor condition of stream wood volume across all 
tiers – even in subbasins with no urbanization – was somewhat surprising. A similar 
habitat monitoring effort in Snohomish County also observed that wadeable stream wood 
volume was consistently below “properly functioning condition” thresholds (Leonetti et al., 
2008). The widespread lack of wood may be the result of the legacy of riparian forest 
clearing and active removal of wood from streams (Booth et al., 1997; Collins et al., 2002; 
Booth and Fox, 2004). Recovery from such a legacy without widespread restoration is 
likely to take decades. 
 
That urbanization is not a significant driver of summer maximum stream temperatures is 
consistent with the work of Booth et al. (2014), who found that local-scale and watershed-
scale factors were at least as important as riparian shade in determining summer stream 
temperatures in Puget Lowland streams. 
 
The lack of a consistent pattern between the habitat metrics we assessed and B-IBI is 
somewhat surprising. The relatively much weaker relationship between habitat metrics 
and biological response (as measured by B-IBI) compared to the relationship between 
watershed scale urbanization and biological response was confirmed in the stressor-
response analysis. However, at least one metric (PWP All), did contribute to explaining the 
variance in WRIA 8 B-IBI scores. PWP All is the proximity-weighted presence of a 
combination of human influences (e.g., buildings, roads, foot paths, revetments) in the 
riparian corridor. Therefore, PWP All might also be considered a local measure of 
urbanization, or at least a measure of site-scale human riparian disturbance rather than a 
traditional measure of stream habitat. 
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In the tier framework created for Chinook salmon recovery planning, Tier 2 streams are 
either streams with high watershed function but little Chinook use or streams with lower 
watershed function, but with episodic Chinook use. Our stream surveys indicate that in 
many of the metrics we measured, on average, Tier 2 areas were intermediate in quality 
between the relatively “better” habitat conditions of Tier 1 areas and “poorer” habitat 
conditions of Tier 3 areas. Yet a closer examination of Tier 2 survey data indicates a wide 
disparity in conditions inside vs. outside UGA boundaries. 
 
Tier 2 areas located outside the UGA boundaries had B-IBI scores higher than Tier 1 
streams on average, while those inside the UGA more closely matched (were slightly higher 
than) Tier 3 streams (Figure 53). This result is explained by the fact that of the seven Tier 2 
sites outside the UGA, five were located in the Cedar River Municipal Watershed. This 
90,000 acre forested area is managed as the city-owned drinking water supply to the 
greater Seattle municipal area, and is protected under a 50-year Habitat Conservation Plan. 
In contrast, Tier 2 sites inside the UGA are located in the cities of Everett, Mill Creek, 
Bothell, Woodinville, and Bellevue.  
 

 

Figure 53. Average B-IBI scores inside and outside the Urban Growth Area boundaries (Tier 1, 2, 
3) in WRIA 8, 2010-2013. 

 
Recent work describing forest cover change in WRIA 8 indicates that Tier 2 areas inside the 
UGA boundaries are losing forest cover along streamside buffers (Vanderhoof et al., 2011; 
Jensen, 2012). This information on forest cover change and the habitat data from our study 
can assist WRIA 8 as they assess progress toward their salmon habitat conservation and 
restoration goals and consider adaptive management (see Section 4.6 below). 
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The pattern in F-IBI with respect to the three tiers was generally similar to that of B-IBI. 
However, it appears that the F-IBI pattern relative to tiers was primarily a consequence of a 
confounding relationship between F-IBI and contributing basin area (WA_ha); highest F-IBI 
scores were more likely to occur at locations with larger contributing watershed area. Tier 
1 stream sites often happen to be larger streams with a larger contributing basin area. That 
Tier 1 stream basins are larger, is partly a consequence of the tier classification system 
based on Chinook salmon use – Chinook salmon generally use larger streams, which is a 
defining characteristic of Tier 1 sites. 

4.3.2 Trends 

The statistical evidence from the watershed-wide trend analysis suggests that the overall 
upward trend in B-IBI over the four year period (2010-2013) is real, and not reflected in an 
accompanying trend at the Sentinel sites. This short-term trend is corroborated in other 
B-IBI data collected annually in a spatially randomized manner in King County (WRIA 8 and 
WRIA  9) during 2010-2013 (Figure 54). While on the surface this may seem to be cause for 
optimism, examination of a longer period in the King County data (2002-2014) indicates a 
great deal of variability over the period of record (Figure 54). This reinforces that caution 
should be exercised in interpreting short term trends, even if statistically significant. Mazor 
et al. (2009) noted short term fluctuations in benthic invertebrate metrics recorded over a 
20-yr period at four northern California sites with no obvious disturbances or changes in 
management. They cautioned that short term assessesments could lead to erroneous 
conclusions about trends in stream health and their causes. One of the key elements of a 
relevant status and trends monitoring program is that it is sustained over a long period 
(Urquhart et al., 1998; Larsen et al., 2004; Lovett et al., 2007; Lindenmayer and Likens, 
2009). It is hoped that the results presented in this study provide a solid foundation and 
lead to the development of a well-designed and sustainable long term WRIA 8 Status and 
Trends monitoring program. 
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Figure 54. Average B-IBI scores King County,2002-2014 (Ambient Monitoring Program). 

 
Note  Data were filtered to return only those sites (75) with scores reported for all years except 2004. 

The program did not collect data in 2004. (Data source: www.Pugetsoundstreambenthos.org) 

4.4 Stressor-Response Relationships 

Developing an understanding of multi-scale stressors (in time and space) that cause 
various biological responses is extremely challenging (e.g., Van Sickle and Johnson, 2008; 
Cuffney et al., 2010; Waite et al., 2014). Beyond the development of statistical models is the 
establishment of causation rather than just correlation (Norris et al., 2012). The stressor-
response models developed as part of this study should be considered a first step in 
developing a more in-depth understanding of stressor-response relationships and possible 
causes of biological impairment in WRIA 8 Chinook streams.  

4.4.1 B-IBI 

That urbanization (as represented by PCT Urban) is a primary driver of declining B-IBI 
scores as confirmed in this study has been documented in streams across the world 
(e.g., Walsh et al., 2005a) and specifically in Puget Sound lowland streams (e.g., Booth et al., 
2004; Alberti et al., 2007). Most recently, an analysis of data collected at over 700 sites 
within the Puget Sound basin found that watershed percent urban land cover explained the 
majority of variance (49 percent) in B-IBI scores (King County, 2014d). The King County 
(2014d) analysis focused only on additional variables representing sampling error and 
natural site features (they did not have habitat data for their sites) which only explained an 
additional 7 percent of the variance in B-IBI scores. 
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In addition to PCT Urban, two other urbanization-related land cover metrics appeared to 
be relatively important explanatory variables in these models – POP Dens and RD Dens 
(population and road density). An initial investigation of the interaction between PCT 
Urban and POP Dens (which consistently entered in as the second highest relatively 
important variable in models that include land cover metrics) indicates that the addition of 
POP Dens improves model explanatory power by capturing the intensity of urban land use 
with the combination of higher PCT Urban and POP Dens translating into lower B-IBI 
scores. That urban development intensity, rather than simple measures of urban land 
cover, might provide a better land cover stressor metric related to changes in benthic 
macroinvertebrate communities has been noted in at least one other study covering nine 
metropolitan regions across the U.S. (Cuffney et al., 2010). Their urban intensity index was 
based on a combination of percent developed land cover, housing density and road density. 
 
Stressor metrics other than land cover urbanization metrics also appeared to contribute to 
the explanation of variance in B-IBI scores in some cases. Additional metrics with relative 
importance greater than 10 percent in any model included stream habitat variables (PWP 
All, D50, X DensioCenter), a temperature metric (MinT), and hydrologic metrics (High Pulse 
Duration, High Pulse Count, R-B Index). This finding seems to corroborate the results of 
many other similar studies that have shown that land cover change as the result of land 
clearing and development affects stream ecosystems via multiple pathways, such as flow, 
habitat, sediment, and water quality impacts (e.g., Maloney and Weller, 2011). 
 
Because of the analytical limitations resulting from having far fewer paired flow-habitat 
monitoring sites, quantitative comparisons of the explanatory power of all of the stressor-
response models as a whole cannot be made.16 However, for the models that utilized all or 
almost all of the WRIA 8 study sites (land cover, habitat, and temperature) the model based 
on just land cover data explained the most variance in B-IBI (94 percent). The model that 
used all three stressor categories also explained a significant amount of variance in B-IBI 
(91 percent), but primarily included land cover variables as the relatively most important 
variables, although PWP All was in the top six variables with a relative importance of four 
percent. As noted in Section 4.3.1 above, PWP All (proximity-weighted presence of a 
combination of human influences such as buildings, roads, foot paths, revetments in the 
riparian corridor) is more a measure of local riparian human disturbance likely related to 
urbanization than a traditional habitat metric. No temperature metrics appeared to be 
substantially important in explaining the variance of B-IBI scores in WRIA 8. 
 
The stressor-response model that included all stressor categories, including hydrologic 
metrics, also identified watershed scale metrics as having the greatest relative importance - 
PCT Urban (51 percent) and POP Dens (22 percent). The third most relatively important 
explanatory metric was PWP All (11 percent). One hydrologic metric (High Pulse Duration) 
had a variable relative importance of only four percent. The relatively low importance of 
hydrologic metrics, specifically flashiness metrics like High Pulse Duration, in explaining 

                                                        
16 Recall that this resulted in the need to use Sentinel sites in models with hydrologic metrics and increasing 
the bag fraction from 0.75 to 0.9 in the BRT models affecting the reliability of the cross-validation (CV) R2 
(Section 2.8.3). 
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B-IBI is somewhat surprising given the high degree of explanatory power of flashiness 
metrics (including High Pulse Duration) for the variance in B-IBI in an earlier study of 16 
paired flow-B-IBI stream sites in King County (DeGasperi et al., 2009).  
 
The stressor-response model using just habitat, temperature and hydrologic metrics 
(i.e., no land cover metrics), explained even more variance in B-IBI scores than the model 
using all four stressor category metrics (93 vs 88 percent). This may lend some credence to 
the hypothesis tested by Walsh (2004) and Walsh et al. (2005b) that the connectedness of 
the stream to watershed impervious surfaces may be more important than the overall level 
of catchment development. A similar concept was suggested by DeGasperi et al. (2009): 
that hydrologic flashiness metrics may be a more direct measure of the ecological effects of 
urbanization as these metrics might better capture the effects of effective (i.e., quick runoff 
generating) or connected impervious surfaces in the watershed.  
 
Recent research on the importance of hydrological regimes in structuring benthic 
macroinvertebrate communities suggests that the influence of hydrology may be more 
nuanced than suggested by previous studies (Booker et al, 2015; Burns et al., 2015). 
Booker et al. (2015) found that hydrologic metrics contributed to the explanation of 
variation in benthic macroinvertebrate community metrics, but this contribution is 
overestimated if other explanatory factors aren’t considered. Burns et al. (2015) found that 
the best statistical models using hydrologic indicators to predict benthic macroinvertebrate 
index scores were much less plausible than a model which used a metric representing 
attenuated imperviousness (AI), a landscape measure of connected imperviousness that 
inversely weights impervious area by its distance from the nearest stormwater drain or 
stream. Burns et al. (2015) suggested that AI is a better predictor of stream benthic 
community response because it integrates hydrologic and other stormwater driven 
stressors such as changes to stream habitat and water quality. 
 
The difficulty of establishing continuous flow gauges at a large number of ecological 
monitoring sites is a well-known problem in flow ecology research (McMahon et al., 2003). 
Difficulties include the relatively high costs of maintaining a stage monitoring site that 
requires field work of sufficient frequency and duration needed to develop reliable stage-
discharge relationships. Two approaches have been used to adapt to or overcome these 
limitations. McMahon et al. (2003) maintained flow stage recorders at all of their ecological 
monitoring sites and developed hydrologic metrics, including metrics representing 
flashiness and duration, from the stage data. Flashiness metrics developed from stage data 
were found to correlate strongly with urban intensity and benthic invertebrate richness 
metrics in many metropolitan regions of the U.S. in the study by Cuffney et al. (2010). 
 
The second approach used to overcome the difficulty of establishing continuous flow 
gauges at ecological monitoring sites relies on the development of statistical or mechanistic 
models that can provide predictions of hydrologic metrics at ungauged sites. Kennen et al. 
(2008) used a process-based watershed hydrologic model for New Jersey to generate 
synthetic flow data for benthic invertebrate monitoring locations and then related 
hydrologic metrics to benthic macroinvertebrate community structure. Although other 
environmental variables were found to be important in explaining benthic 



Monitoring for Adaptive Management 

King County Science and Technical Support Section  115 April 2015 

macroinvertebrate community structure, including land cover and habitat variables, 
several hydrologic metrics were also found to be important (Kennen et al., 2008). 
Significant hydrologic metrics included metrics representing stream flashiness.  
 
Future monitoring efforts should explore the potential utility of measuring stage at a large 
number of biological and habitat monitoring sites. The flow data used here is based on 
stage data, so it may be possible to explore correlations between stage-based hydrologic 
metrics and B-IBI. Because King County has already developed watershed hydrologic 
models for much of King County, investigation of the use of synthetic flow data from these 
models might also begin to establish their utility for generating flow metrics at ungauged 
locations. Note that watershed hydrologic model output was used in King County’s initial 
exploration of relationships between hydrologic metrics and benthic invertebrate 
community data, including B-IBI scores (Cassin et al., 2005). 

4.4.2 F-IBI 

Watershed area was found to be the primarily explanatory variable for F-IBI scores. This 
was unanticipated, given the calibration and validation work conducted specifically as part 
of the development of this fish index for Puget Sound lowland streams (Matzen and Berge, 
2008). However, the difficulty of developing an index of biotic integrity based on fish 
assemblage data in coldwater streams (and rivers) is widely recognized due to the 
generally low species richness in these streams, which typically increases with increasing 
anthropogenic disturbance (Hughes et al., 2004).  
 
In addition, a number of streams had small barriers that influenced the movement of 
sculpin that may have influenced the F-IBI scores (see report in Appendix B). Generally, fish 
assemblage metrics that capture the effects of migration barriers are not common (Roset 
et al., 2007). In a study of upstream passage of two migratory sculpin species in Puget 
Sound lowland streams unrelated to our study, it was found that structures built to benefit 
upstream migration of salmon and trout still inhibited the movement of sculpin (LeMoine 
and Bodensteiner, 2014). LeMoine and Bodensteiner (2014) also concluded that water 
quality, physical habitat and the presence of other fishes were not related to the presence 
or absence of sculpin species. 
 
A limited review of available literature on the development of fish assemblage indicators 
suggests that longitudinal gradients, often represented by upstream basin area, often have 
a substantial influence on fish assemblages (Vannote et al., 1980; Hughes et al., 2004; Roset 
et al., 2007). For example, in their development of a fish index for coldwater streams of 
western Oregon and Washington, Hughes et al. (2004) adjusted their metrics where 
necessary to account for the effect of catchment area. Matzen and Berge (2008) did not 
evaluate the potential effect of watershed area (or stream size) on their F-IBI. Further work 
may be needed to determine which component metrics are strongly related to watershed 
area to develop a revised F-IBI indicator that is uncorrelated with watershed area or to 
determine if there is an upper limit on watershed size above which F-IBI is no longer 
determined primarily by urbanization and associated habitat changes.  
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Although watershed area appeared to be the dominant explanatory variable, models that 
did not include watershed scale land cover metrics indicated that habitat variables (in the 
general sense) could also explain a substantial amount of variation in F-IBI, although at 
least two of these variables were undoubtedly confounded by watershed size – bankfull 
width (X BFWidth) and thalweg depth (X TWDepth). The remaining variables that had a 
relative importance of more than 10 percent in any one model included stream habitat 
(PCT Shrub, X PoolUnitDepth), temperature (MeanT, DielRange, X7DMax, DaysGT16) and 
hydrologic (Low Pulse Duration, X30DLow, High Pulse Duration, Flow Reversals) metrics. 
The importance of stream temperature and flow to stream fish community structure is to 
be expected. Presumably, further refinement of F-IBI or the exploration of other useful fish 
community metrics will allow for a more definitive exploration of these relationships. 
 
Note that we did not see a similar relationship between B-IBI and watershed area. No 
relationship was expected as previous evaluations of the Puget Sound lowland B-IBI have 
found no statistically significant relationship between B-IBI and basin area (e.g., Morley, 
2000; King County, 2014d). 

4.5 Trend Detection Power 

The power analysis of the regional trend model applied in this study confirmed the results 
of similar studies of the power of trend detection monitoring programs (e.g., Larsen et al., 
2004). That is, for replicated metrics with medium to high precision, reasonably high 
power to detect moderate levels of change (i.e., from 1 to 3 percent per year) is generally 
not achieved until a program has been in operation for over 10 years. It is surprising then 
that a statistically significant trend in B-IBI was detected over the relatively short four year 
duration of this study. This is due in large part to the large estimated rate of change – 
approximately seven percent per year. However, as indicated above, short term 
fluctuations in benthic invertebrate metrics, unconnected to obvious disturbance events or 
land management, are possible (Mazor et al., 2009). 
 
Note that the results of the power analysis are based on revisiting the same sites every 
year. Substantial power is lost as sampling frequency decreases. A revisit design that 
samples the same sites less frequently (say every other year or every five years) will take 
longer to achieve the same statistical power. For example, sampling every other year would 
take twice as many years to achieve the same power for a particular metric.  
 
There are also study designs other than the one used in this study that can enhance the 
reliability of assessments of status without significantly compromising trend detection 
power; for example rotating panel designs (Urquhart et al., 1998; Anlauf et al., 2011; 
Urquhart, 2012). The statistical tools applied to evaluation of our study design can also be 
used to explore other designs or potential improvements in power as a result of 
improvements in the precision of particular metrics.  
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4.6 Adaptive Management  

Generally, four years is an insufficient period to detect meaningful change in watershed 
conditions with any degree of certainty. Our findings do not indicate that habitat conditions 
of small salmon streams in the watershed have changed over the four-year period of our 
project, and our findings confirm the more general assessments of watershed condition 
presented in the 2005 Chinook Salmon Conservation Plan. Based on B-IBI scores, Tier 1 
areas generally remain in overall good condition, Tier 2 areas contain a range of conditions, 
and Tier 3 areas are generally in poor condition (e.g., see the categorical analysis bar plots 
in Figure 12). However, in most streams surveyed, regardless of tier, wood volume 
condition was generally below thresholds for properly functioning salmon habitat, and 
summer maximum stream temperatures exceeded state standards established to protect 
salmonid habitat. 
 
In this section we consider possible adaptive management responses to these monitoring 
results in light of salmon conservation actions in WRIA 8. We also discuss longer term 
needs if adaptive management is to be successfully applied in this context. 

4.6.1 Tiered Approach to Salmon Recovery 

The WRIA 8 Plan partitioned the watershed into three management tiers (Leonetti et al., 
2005). This framework was based on a watershed evaluation using land cover and other 
spatial data, B-IBI scores, and documented Chinook salmon use. The information presented 
in this report and in other current sources (e.g., land cover analyses and Chinook 
escapement reports) can be used to re-assess and update the classification framework. The 
WRIA 8 Technical Committee and Salmon Recovery Council now have the opportunity to 
use these newer data to verify and test the assumptions contained in the 2005 work. This 
could be combined with recent monitoring and adaptive management efforts by the 
watershed to align with regional reporting needs (e.g., WRIA 8 Technical Committee, 
2014).  
 
In addition, it may be appropriate to re-examine or fine-tune management strategies based 
upon the tier framework. In the WRIA 8 framework, Tier 2 areas were either streams with 
high watershed function but little Chinook use or streams with lower or moderate 
watershed function, but with documented (perhaps episodic) Chinook use. These two types 
of streams may require vastly different conservation approaches. Sorting the Tier 2 
streams according to UGA status reveals a very large divergence between areas: Tier 2 sites 
located outside the UGA boundaries (e.g., five of the seven streams are in the upper Cedar 
River watershed, and managed for conservation) had average B-IBI scores higher than their 
Tier 1 counterparts; conversely, those inside the UGA scored on average only slightly above 
their Tier 3 counterparts (Figure 53).  
 
Tier 2 streams (notably North Creek and Little Bear Creek) were called out in the 
conservation framework as exhibiting moderate watershed function and still supporting 
episodic use by Chinook salmon. Our B-IBI and other data suggest that Tier 2 areas inside 
the UGA score on average slightly higher than Tier 3 areas (though still classified as “poor” 
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condition). The WRIA 8 Plan indicated that it was a goal to turn Tier 2 areas into Tier 1. In 
our opinion it is more likely that Tier 2 areas inside the UGA will become Tier 3 without 
specific actions to prevent this. Given its location wholly inside the UGA boundary, North 
Creek appears to be at the most risk of degradation in the short term, probably due to 
continuing riparian forest cover loss (Vanderhoof et al., 2011; Jensen, 2012).  
 
Tier 3 areas are the most urbanized areas of the watershed, and are generally in poor 
condition by most measures of habitat quality. Since these streams are not directly used by 
Chinook salmon, recommendations in the WRIA 8 Plan focusing on water quality and 
stormwater control appear appropriate and consistent with Chinook salmon conservation 
objectives. However, if land managers in Tier 3 areas intend to support or sustain coho 
salmon or other sensitive organisms inhabiting these small urban streams, then further 
actions are likely appropriate. Temperature data combined with biological and habitat 
measurements, as well as other research on urban stream syndrome and salmon pre-
spawn mortality (e.g., Booth et al., 2004; Alberti et al., 2007; and Scholtz et al., 2011) 
suggest that current habitat conditions are likely insufficient to support the survival of 
coho salmon or other sensitive fish species long-term in these urban streams. 

4.6.2 Condition Thresholds for Relevant Metrics 

Although we identified quantitative expectations (thresholds) for habitat condition in 
Puget Lowland streams with respect to salmon for wood volume (LWDSiteVolume100m) 
and stream temperature (7DMax), we were unable to ascertain quantitative Puget Lowland 
condition thresholds, using the metrics as they are calculated by the Ecology EIM, for other 
important salmon habitat characteristics (e.g., riparian condition, pools, bottom substrate). 
While some standards might be adapted from guidance created for other purposes or for 
wider regions (e.g., NOAA Matrix of Pathways and Indicators, Washington State Forest 
Practices Board), additional work is needed to establish quantitative condition thresholds 
that are specific to Puget Sound lowland streams. Such an effort would benefit regional 
salmon recovery efforts and will likely require a larger Puget Sound-wide effort. 
 
In the absence of such thresholds, cumulative distribution plots can still help us monitor for 
changes over time: a shift of the plot to the left or right outside the documented confidence 
bounds indicates changing conditions. Though no long-term monitoring program exists at 
this time, our project has demonstrated how continued monitoring and analyses can be 
used to assess such progress at the watershed scale. 

4.6.3 Future Monitoring Needs 

It is widely recognized that consistent, long-term environmental monitoring data are 
essential for effective watershed management and decision-making (e.g., Lovett et al., 
2007; Lindenmayer and Likens, 2009; Burt et al., 2014). The WRIA 8 Plan stresses the need 
for habitat status and trends monitoring, tightly linked to decision-making, as an essential 
element for the success of the plan. Regionally, the lack of status and trends monitoring of 
salmon habitat at the watershed scale is a documented deficiency (e.g., NOAA, 2006; 
PSEMP, 2013).   
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The WRIA 8 status and trends monitoring project demonstrated the utility of a spatially 
balanced and probabilistic sampling framework using regional protocols at a watershed 
scale. Habitat and macroinvertebrate data are available on our project website as well as 
housed in regional databases.17 The data from this project can be incorporated into other 
studies using the same regional framework and protocols.  
 
A small number of habitat and biological community metrics with high precision and 
repeatability, sampled annually, using a proven framework, regional data repositories and 
established analytical tools, would benefit not only the watershed but help meet regional 
needs as well. Such a watershed-scale program could be supported by regional guidance on 
quantitative condition thresholds. Converging needs at the local and regional level for 
ambient monitoring for habitat, water quality, and stormwater could be combined to 
provide economies of scale that result in significant efficiencies and cost savings, both 
regionally and locally (Larsen et al., 2007; Stein and Berstein, 2008).  
  

                                                        
17 WRIA 8 Habitat Status and Trends (http://www.kingcounty.gov/environment/wlr/sections-
programs/science-section/doing-science/wadeable-streams.aspx), Ecology 
(http://www.ecy.wa.gov/PROGRAMS/eap/stsmf/index.html) and Puget Sound Stream Benthos 
(http://www.pugetsoundstreambenthos.org/).  

http://www.kingcounty.gov/environment/wlr/sections-programs/science-section/doing-science/wadeable-streams.aspx
http://www.kingcounty.gov/environment/wlr/sections-programs/science-section/doing-science/wadeable-streams.aspx
http://www.ecy.wa.gov/PROGRAMS/eap/stsmf/index.html
http://www.pugetsoundstreambenthos.org/
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5.0 CONCLUSIONS AND 

RECOMMENDATIONS 

The data collected in this study provide important baseline information on the status and 
trends of wadeable salmon streams in WRIA 8, and relationships between land cover, 
hydrology, habitat, and biological community response. These data can be compared to 
future surveys of stream habitat conditions in WRIA 8. We offer the following concluding 
findings and recommendations. 

5.1 Findings 

 Stream biological conditions (as measured by the Benthic Index of Biotic Integrity or 
B-IBI) ranged from very poor in heavily urbanized areas to very good in rural, 
forested areas. 

 Stream habitat conditions considered important for salmon (wood volume  and 
water temperature) were found to be predominantly poor even in rural areas. Wood 
volume was consistently rated poor and water temperatures frequently exceeded 
state standards for core summer salmonid habitat. 

 Generally, four years is not a sufficient length of time to see trends in stream 
resources. However, we did see a statistically significant upward trend 
(improvement) in the Benthic Index of Biotic Integrity (B-IBI) in the watershed 
between 2010 and 2013. This trend was in contrast to the lack of trends in habitat 
condition in those streams. Comparison to a larger WRIA 8 and 9 dataset with many 
more years of data suggests that the increase in B-IBI scores is likely due to natural 
variability in a highly variable resource.  

 The spatially-balanced data we collected are of sufficient precision to reliably test 
for trends in the sampled streams over time. We identified a short list of metrics 
representing indicators of stream habitat conditions important to salmon (wood 
volume, pool area, sediment composition, canopy cover, and B-IBI) that are 
repeatable and precise. 

 Our analyses indicate that for most of the metrics we measured, it will take an 
annual monitoring program 10 to 20 years to reliably detect a 3 percent annual 
change in the status of the most relevant metrics. Currently no such program exists. 

 Our study corroborated most other research on relationships between land cover 
stressors and benthic macroinvertebrate community response as measured by 
B-IBI. Urbanization and population density best explained the observed variance in 
B-IBI scores – low levels of urbanization and human population density coincide 
with highest B-IBI scores and high levels of urbanization and population density 
coincide with lowest B-IBI scores. 

 Our study also provided the first test of the utility of a Fish Index of Biotic Integrity 
(F-IBI) developed especially for Puget Sound lowland streams. Our results indicate 
that the Puget Sound lowland F-IBI (although initially calibrated and validated with 
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data collected primarily from King County streams) is confounded by contributing 
upstream basin area and/or stream size. Further research will be needed to identify 
a F-IBI that is comparable to the B-IBI, which is not confounded by natural 
landscape features. 

 
For Chinook recovery planning purposes, the watershed was previously organized into 
three tiered priority areas based primarily on Chinook use. Findings within the context of 
these recovery planning tiers follow: 
 

 Tier 1 areas include primary spawning habitat as well as migratory and rearing 
corridors for Chinook salmon. Management strategies for Tier 1 areas have 
generally involved the preservation of existing high quality habitat, and restoration 
where needed. Our surveys confirm that the majority of Tier 1 areas are of relatively 
higher quality than Tier 2 or Tier 3 sites. B-IBI, F-IBI and pool area were generally 
higher in Tier 1 areas. However, wood and temperature metrics were low in all tiers. 

 Some Tier 2 areas include streams located completely inside the Urban Growth Area 
boundaries, where development and infill is occurring. Tier 2 streams inside the 
UGA are at the most risk of degradation in the short term. It is likely that the most 
high-functioning Tier 2 areas within the UGA boundaries (i.e., North Creek) will 
degrade further without focused efforts. 

 Tier 3 areas are the most urbanized areas of the watershed, and are generally in 
poor condition by most metrics. From a Chinook salmon conservation perspective 
only, recommendations in the WRIA 8 Plan might be considered sufficient, 
notwithstanding the lack of evidence that such actions are resulting in 
improvements. However, current strategies are likely insufficient to support the 
long-term occurrence of coho salmon in these urban streams. 

5.2 Recommendations 

We recommend that the WRIA 8 Technical Committee and Salmon Recovery Council 
consider the following actions: 

 Re-evaluate the tier strategy based on new information in this report and 
other sources. The WRIA 8 Plan partitioned the watershed into three management 
"tiers" (Leonetti et al., 2005). This framework was based on a watershed evaluation 
using land cover and other spatial data (ca. 2001-2003), Benthic Index of Biotic 
Integrity (B-IBI) scores (1995-2003), and documented Chinook salmon use. The 
information presented in this report and from other recent sources (e.g., land cover 
change and Chinook escapement reports) can be used by the WRIA 8 Technical 
Committee to re-assess and update the classification framework.  

 Re-examine management strategies in light of the information on habitat 
quality in this report. Strategies for Tier 1 and Tier 3 areas appear to appropriately 
match conditions in those areas. However, Tier 2 areas inside the UGA boundary are 
intermediate in quality between Tier 1 and Tier 3 areas. Tier 2 areas include some 
streams inside the Urban Growth Area boundaries where development and infill is 
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occurring, and forest cover is diminishing. Tier 2 areas inside the UGA appear to be 
at the most risk of degradation in the short term. Decision-makers should determine 
whether these areas can (and should) be protected and improved enough to 
continue contributing to Chinook recovery in WRIA 8, and if so, develop and 
implement appropriate strategies.  

 Reclassify some areas based on information acquired since 2005. The upper 
Cedar River and its tributaries above Landsburg Dam were classified as Tier 2 in the 
original framework because the Technical Committee did not have sufficient 
information on Chinook use above the dam. Data acquired since then confirms that 
this area has become a core area for Chinook and should be re-classified as Tier 1. 
Other areas, where watershed function and/or Chinook use has declined, may 
require reclassification to a lower level or increased efforts to support Chinook use. 

 Request regional support to develop condition thresholds for biologically 
relevant metrics that are specific to Puget Sound lowland streams. Thresholds 
based on reference conditions are needed to classify or categorize measured metrics 
into poor, fair, good condition or supporting/non-supporting properly functioning 
habitat condition. In this study, we could only identify thresholds for B-IBI, F-IBI, 
wood volume and summer maximum stream temperatures. Additional work is 
needed to establish condition thresholds for other biologically relevant metrics that 
are specific to Puget Sound lowland streams. 

 Implement a monitoring strategy for the future. The information in this report 
provides baseline information collected in a spatially balanced and probabilistic 
sampling framework using appropriate methods with quantified precision. It 
provides estimates of precision that indicate it would take an annual monitoring 
effort about two decades to confidently detect a 3 percent annual change. A small 
number of habitat and biological community metrics with high precision and 
repeatability, sampled annually, using a proven framework, regional data 
repositories and established analytical tools, benefits not only the watershed but the 
region as well. 

5.3 Conclusions 

One of the key elements of a relevant status and trends monitoring program is that it is 
sustained over a long period of time. It is hoped that the information presented in this 
study provide a solid foundation for the development of a well-designed and sustainable 
long term WRIA 8 status and trends monitoring program. A small number of habitat and 
biological community metrics with high precision and repeatability, sampled annually, 
using a proven framework, regional data repositories and established analytical tools, 
benefits not only the watershed but the region as well. 
 
Furthermore, future habitat status and trends monitoring that capitalizes on converging 
regional and local needs from multiple sectors (NPDES, salmon recovery, stormwater, etc.) 
could contribute substantially to a consistent and reliable long-term set of decision-making 
tools. These tools would benefit not only local land management agencies, but the region as 
well.  
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COMPARISON OF LAND COVER BETWEEN PAIRED STREAM HABITAT AND GAUGING STATIONS 
 
Based on the results of the B-IBI stressor-response modeling (see Section 3.4.1), comparisons of 
upstream watershed land cover data between the paired stream habitat monitoring sites and stream 
gauge locations identified in Table 4 in Section 2.6 of the main report above are presented for watershed 
area (WA_ha), percent urban land cover (PCT Urban), population density (POP_Dens) and road density 
(RD_Dens) in Table A-1 below. It was expected that relative percent differences (RPDs) in upstream 
watershed area between some paired locations would be large due to the relatively large distances (up to 
6.5 km for the Carey Creek site in the Issaquah Creek basin – see Figure 3 in Section 2.6). The RPD in 
watershed area between these two sites was 288 percent.

1
 Although there were other paired habitat-

gauge sites with large RPDs in watershed area, many of the other differences were relatively small so 
that the median RPD was 3.0 percent (Table A-1). A similar pattern was noted for PCT Urban, with the 
maximum RPD of almost 15,000 percent for the same pair of sites chosen to represent Carey Creek in 
the Issaquah basin. However, this RPD was somewhat anomalous and the relative amount of PCT Urban 
for both of the paired sites was generally low (0.04 and 5.9 percent). Again, the median RPD for all site 
pairs was relatively low - -0.1 percent (Table A-1). Also, the RPD in population density was extremely 
large for the Carey Creek site pairs (~2,000 percent), but the population density was relatively low at both 
sites (2 and 51 inhabitants per km

2
). The median RPD was very small – 0.1 percent (Table A-1). The 

RPDs in road density were generally smaller with the greatest RPD of 34 percent for the paired sites on 
upper Little Bear Creek (WAM06600-023691 and Lb). Again, the median RPD was very small – 0.05 
percent. 
 
When more than one gauge was considered a potential candidate to pair with a habitat monitoring site, 
the decision to use one gauge over another was driven primarily by the relative amount of useable data at 
the candidate gauges. This resulted in the selection of some gauges that were relatively distant from the 
habitat site they were intended to represent. The decision of what constituted a representative stream 
gauge was rather subjective, but was based on the hypothesis that hydrologic metrics from two locations 
along a sub-basin stream network would have relatively similar hydrologic responses as long as the land 
cover characteristics that drive those responses were similar and the metrics under consideration were 
not significantly affected by watershed scale. DeGasperi et al. (2009) found that the flashiness metrics 
used in this study were highly correlated with percent urban land cover, so flow gauging locations along 
the same stream with similar proportions of urban land cover would be expected to have similar 
flashiness metric values. DeGasperi et al. (2009) also found that with the possible exception of R-B Index, 
TQ mean and Flow Reversals, these metrics were not significantly correlated with basin area. Therefore, 
differences in High Pulse Count, Duration and Range or Low Pulse Count and Duration would not be 
expected based on differences in basin area between gauges with similar proportions of urban area. 
 
To test the hypothesis that hydrologic metrics along a stream network would be comparable (or would 
scale in a linear fashion) we identified one stream reach on May Creek, a tributary to Lake Washington, 
that could be used to conduct an initial test of this hypothesis. These gauges are identified in Table 4 in 
Section 2.6 of the main report and include 37a near the mouth of May Creek, 37b located closest to the 
habitat monitoring site and 37H upstream of 37b and the habitat monitoring location. 37H was chosen to 
represent the habitat monitoring site because no useable data were collected at 37b during our study as 
this site was discontinued and the gauge at 37H was established. Station 37a had useable data, but was 
located near the mouth of the creek and was likely relatively more urban, as much of the development in 
this basin is found in the lower watershed. Again based on the results of the B-IBI stressor-response 
modeling (see Section 3.4.1), comparisons were made for High Pulse Duration, R-B Index and High 
Pulse Count for 37a vs 37b (useable data for 1992-2009) and 37a vs 37H (useable data for 2010-2013). 
 
Comparisons for High Pulse Duration indicate that although there is a fair amount of scatter in this metric 
when comparing results for 37a to 37b, the relationship is relatively linear (Figure A-1). The range in High 

                                                        
1 Note that differences were calculated as the relative percent difference (RPD) between stream gauge and 
habitat sites [RPD = {(Gauge – Habitat)/Habitat}*100] so positive differences indicate that the value for the 
gauging site is greater and negative values indicate the value for the gauging site is lower. 
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Pulse Duration between 2010 and 2013 for both 37a and 37H was much smaller and the relationship 
between the most upstream and most downstream site was very close to a 1:1 relationship. The scatter in 
the long-term comparison of sites 37a and 37b was much less for R-B Index and High Pulse Count and 
the comparisons of 37a to 37H also indicate a close 1:1 relationship in these metrics (see Figures A-2 
and A-3). 
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Table A-1 Comparison of watershed land cover upstream of paired stream habitat and stream gauge sites. 

 
  Watershed Area (WA_ha) Percent Urban (PCT_Urban) Population density (POP_Dens) Road Density (RD_Dens) 

  (ha)  (percent)  (people per km2)  (roads per km2)  

Site ID Gauge ID Habitat Gauge RPD (%)1 Habitat Gauge RPD (%)1 Habitat Gauge RPD (%)1 Habitat Gauge RPD (%)1 

EPA06600-CHUC01 ARRO 1,749 1,749 0.0 5.2 5.2 0.0 25 23 -4.7 2.9 2.9 -0.2 

EPA06600-DEWA01 DW_KC 4,400 4,400 0.0 0.6 0.6 -0.4 4 5 4.6 1.5 1.5 0.1 

ERR06600-091291 Bc 3,605 2,860 -20.7 37.9 34.8 -8.3 424 427 0.7 6.4 6.1 -4.2 

SEN06600-GRIF09 21A 4,098 4,216 2.9 0.2 0.2 -2.0 1 3 89.4 3.5 3.5 1.6 

WAM06600-001639 12069550 3,231 3,231 0.0 5.5 5.5 0.0 102 102 -0.1 2.6 2.5 -0.2 

WAM06600-002259 12120600 1,309 5,076 287.8 0.04 5.9 14,605  2 51 2,049.8 3.1 3.6 14.9 

WAM06600-015067 So 1,585 1,585 0.0 83.8 83.8 0.0 1807 1811 0.2 11.7 11.7 0.0 

WAM06600-022259 31q 365 384 5.1 0.0 0.0 0.0 0 0 0 2.2 2.1 -3.9 

WAM06600-023691 Lb 273 898 228.9 31.4 44.6 41.9 308 743 141.1 5.2 7.0 33.8 

WAM06600-035963 34a 451 1,046 131.7 73.2 68.1 -7.0 1912 1762 -7.9 11.8 12.2 2.9 

WAM06600-036971 02f2 1,761 1,868 6.0 16.9 17.4 2.9 239 249 4.2 4.8 5.0 2.3 

WAM06600-038087 38c 789 1,797 127.9 80.1 77.7 -2.9 2543 2020 -20.6 12.5 12.2 -2.8 

WAM06600-039815 14b 1,734 2,148 23.9 6.9 8.9 30.5 30 75 154.5 3.0 3.4 15.0 

WAM06600-049499 Nc 7,263 7,001 -3.6 65.3 65.4 0.1 1584 1608 1.5 10.3 10.3 -0.4 

WAM06600-050295 51o 365 359 -1.7 79.0 78.7 -0.4 1945 1959 0.7 14.3 14.4 0.4 

WAM06600-057739 STA505 72 73 0.4 83.5 83.2 -0.4 3291 3296 0.1 13.3 13.2 -0.6 

WAM06600-062567 67a 924 902 -2.4 9.0 8.3 -7.7 308 287 -6.7 3.1 2.9 -6.5 

WAM06600-063831 STA508 665 659 -0.8 85.9 86.5 0.7 3021 3045 0.8 14.4 14.5 0.6 

WAM06600-065043 STA401 319 319 0.0 79.7 79.7 0.0 2148 2147 0.0 11.5 11.5 0.0 

WAM06600-067147 No 1,602 1,652 3.1 72.1 71.8 -0.4 2109 2074 -1.7 11.0 11.0 -0.2 

WAM06600-076119 02g 2,979 3,129 5.1 35.0 34.8 -0.6 383 379 -1.0 6.3 6.4 0.5 

WAM06600-080407 12120000 1,899 3,749 97.4 77.1 71.8 -6.8 1948 1475 -24.3 11.8 11.1 -5.3 

WAM06600-081267 37H 1,033 1,420 37.5 27.0 28.1 4.0 142 137 -3.8 5.2 5.3 1.3 

WAM06600-083131 Sc 1,738 2,514 44.7 72.5 70.5 -2.8 2053 1788 -12.9 10.4 11.0 5.3 

WAM06600-083959 27a 1,690 1,744 3.2 73.8 73.4 -0.4 2112 2123 0.5 14.0 14.0 -0.2 

WAM06600-111639 02N 179 179 0.0 36.9 36.9 0.0 368 351 -4.7 7.7 7.7 0.1 

WAM06600-115443 31H 1,033 1,420 37.5 27.0 28.1 4.0 142 137 -3.8 5.2 5.3 1.3 

WAM06600-123207 12121600 14,751 14,737 -0.1 13.2 13.2 -0.2 232 233 0.3 4.3 4.3 -0.1 

Minimum  72 73 -20.7 0.0 0.0 -8.3 0 0 -24.3 1.5 1.5 -6.5 

Maximum  14,751 14,737 288 86 87 14,605 3,291 3,296 2,050 14.4 14.5 33.8 

Mean  2,209 2,540 36.2 42.1 42.2 523 1,042 1,011 84 7.6 7.7 2.0 

Median  1,594 1,746 3.0 36 36 -0.1 376 403 0.1 6.4 6.7 0.05 

 
Note: RPD = [(Gauge – Habitat)/Habitat]*100. Some small inconsistencies are due to rounding of the calculated RPDs 
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Figure A-1 Comparison of High Pulse Duration for May Creek gauging stations 37a vs 37b 

(1992-2009) and 37a vs 37H (2010-2013). 

 
 
 

 
 
Figure A-2 Comparison of R-B Index for May Creek gauging stations 37a vs 37b (1992-2009) 

and 37a vs 37H (2010-2013). 

 
 
 

0

5

10

15

0 5 10 15

High Pulse Duration

37a vs 37b

37a vs 37H

1:1 line

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5

R-B Index

37a vs 37b

37a vs 37H

1:1 line



Monitoring for Adaptive Management 

King County Science and Technical Support Section A-8 April 2015 

Figure A-3 Comparison of High Pulse Count for May Creek gauging stations 37a vs 37b (1992-
2009) and 37a vs 37H (2010-2013). 
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Appendix B: Effect of Small Barriers on 

Populations of Sculpin in Puget Sound Lowland 

Streams 

Roger A. Tabor, F. Teal Waterstrat 
U.S. Fish and Wildlife Service 

Washington Fish and Wildlife Office 
510 Desmond Drive SE, Suite 102 

Lacey, Washington 98503 

Daniel W. Lantz and Hans B. Berge1 
King County Department of Natural Resources and Parks 

201 South Jackson Street, Suite 600 
Seattle, Washington 98104 

Abstract 

We examined the effect that small barriers had on populations of lowland sculpin 
(coastrange sculpin [C. aleuticus] and prickly sculpin [C. asper]).  Because these species 
have pelagic larvae that drift downstream to quiet waters and juveniles and adults migrate 
upstream, barriers can affect their distribution.  We compared sculpin populations 
immediately upstream and downstream of small barriers in 18 Puget Sound lowland 
streams. All streams had populations of coastrange sculpin and/or prickly sculpin in 
stream reaches downstream of the barrier.  In 7 of the 18 streams studied, upland sculpin 
species (riffle sculpin [C. gulosus], torrent sculpin [C. rhotheus], and/or shorthead sculpin 
[C. confusus]) were also present.  These species can complete their life cycle in a relatively 
small area and barriers are less likely to affect their distribution.  In all streams examined, 
the abundance of lowland sculpin immediately upstream of the barrier was lower than 
immediately downstream of the barrier.  In 11 of the 18 streams, lowland sculpin were not 
present immediately upstream of the barrier.  The few lowland sculpin collected upstream 
of the barrier were considerably larger than those collected downstream of the barrier.  In 
most streams with upland sculpin populations, upland sculpin were rare downstream of 
the barrier and abundant upstream of the barrier.  Overall, barriers appear to have a strong 
effect on the distribution of lowland sculpin and need to be taken into account when 
assessing stream fish communities. 

1 Present address: Washington Department of Natural Resources, Olympia, Washington 
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Introduction 

The distribution of fishes is often influenced by manmade and natural barriers.  The 
importance of barriers to anadromous salmonids has been studied extensively; however, 
the effects of barriers on small, nongame species have received relatively little attention 
(LeMoine and Bodensteiner 2014).  Barriers may alter fish abundance and species 
composition, which may indirectly affect other components of the aquatic community.  
Restoration activities in streams will often include low-head dams designed to increase the 
percentage of pool habitat.  These dams are not barriers to anadromous fish movement; 
however, there is the potential for these barriers to affect the movement of sculpin and 
other small native fishes which can be highly influential to ecosystem health.  Because 
small, nongame species may not be strong swimmers, their movements may be influenced 
by relatively small barriers.  For example, LeMoine and Bodensteiner (2014) found barriers 
with a perch height of 0.15 m could block upstream movement of sculpin (Cottus spp.). 

Freshwater sculpin are often an important component of lotic and lentic environments in 
cool- and coldwater ecosystems of North America and can be the most abundant fish 
present.  Sculpin can have important effects on aquatic ecosystems through competition 
and predation (Rosenfeld 1999).  Some species spawn in lower stream reaches and juvenile 
and adults migrate to upstream habitats.  Because they are not strong swimmers, small 
barriers can limit upstream movement of these species (Shapovalov and Taft 1954; Mason 
and Machodori 1976). 

The sculpins found within the streams of the Puget Sound region can be divided into two 
main types: lowland and upland species.  Although there is often a large degree of overlap, 
these groups generally occupy different areas of a basin.  Lowland freshwater species are 
widespread in lowland lakes and usually found in the lower reaches of streams and rivers 
including estuaries.  Upland freshwater species are found in the middle and upper reaches 
of streams and rivers and upland lakes.  Lowland freshwater sculpin consist of coastrange 
sculpin (C. aleuticus) and prickly sculpin (C. asper).  Both species have pelagic larvae, 
relatively small eggs, and have higher fecundity rates than other freshwater sculpin in the 
Puget Sound region (Wydoski and Whitney 2003).  They usually reproduce in lakes or 
lower reaches of rivers and larvae drift downstream to lakes, large rivers, or estuarine 
environments where food availability is high but risk of predation is also high (Goto et al. 
2014).  After larvae grow for a few weeks, they assume a benthic existence.  Many juveniles 
and adults will then slowly move upstream to inhabit lower reaches of rivers. 

Upland freshwater sculpins in the Puget Sound region consist of riffle sculpin (C. gulosus), 
shorthead sculpin (C. confusus), and torrent sculpin (C. rhotheus) (Tabor et al. 2007).  These 
species have larger eggs and lower fecundity than the lowland species (Wydoski and 
Whitney 2003).  They are generally thought to assume a benthic existence immediately 
after hatching, which is believed to be an adaptation for middle and upper reaches of rivers 
where food availability is low but predation risk is low (Goto et al. 2014).  The entire life 
cycle of these species can be completed in a relatively small area; whereas lowland sculpin 
species generally complete their life cycle over a large area. 
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In streams without barriers, the distribution and relative abundance of lowland and upland 
sculpin species shows a gradual change as you move upstream (Tabor et al. 2007).  
Lowland sculpin typically are the dominant sculpin in lower reaches while upland sculpin 
are the dominant sculpin in upper reaches.  The extent that lowland sculpin can move 
upstream is related to gradient and distance from quiet waters where the larval fish 
originated (Mason and Machodori 1976).  In the Cedar River, coastrange sculpin extend 
upstream to river kilometer 22.4.  The limit of their range is likely related to the distance to 
Lake Washington and an increase in stream gradient at river kilometer 22.4. 

The overall objective of this study was to determine what effect small barriers have on 
lowland sculpin species and how they may indirectly affect other fish populations.  We 
compared fish populations immediately upstream and downstream of small barriers in 18 
Puget Sound lowland streams. All streams had populations of coastrange sculpin and/or 
prickly sculpin in stream reaches downstream of the barrier.  In 7 of the 18 streams 
studied, upland sculpin species were also present. 

Methods 

Site selection.-- To locate barriers that may limit upstream migration of lowland sculpin, we 
walked the lower reaches to look for the first barrier that met the sculpin barrier criteria of 
LeMoine and Bodensteiner (2014).  Potential barriers further upstream were not 
examined; these secondary barriers may limit the upstream movement of upland sculpin 
species but these species can complete their entire life cycle both downstream and 
upstream of the barrier and determining their ability to move upstream of the secondary 
barrier would require other methods than the species distribution survey that we 
conducted.  A total of 18 streams were selected for this study (Table 1; Figure 1).  With the 
exception of Issaquah Creek, Perrinville Creek, and Oyster Creek, barriers were small 
barriers that should have minimal effect on upstream movement of adult salmonids. The 
barrier at Issaquah Creek was a weir system to guide anadromous salmonids into the 
adjacent hatchery.  The barrier at Perrinville Creek is a 0.73 m perched culvert and the 
barrier at Oyster Creek is a 1.1 m natural waterfall.  At these sites, differences in fish 
abundance downstream and upstream of the barrier could also be related to differences in 
anadromous salmonid abundance. 

Streams were sampled during the summer low-flow period in either 2013 or 2014.  We 
also included data from two streams in the City of Seattle that were surveyed in 2005 or 
2006 as part of a fish distribution study (Tabor et al. 2010). 

Fish sampling.-- At each identified barrier, we attempted to sample at least three riffles and 
three pools immediately downstream and upstream of the barrier.  Downstream of the 
Kelsey Creek barrier is Mercer Slough and we just sampled a small area immediately 
downstream of the barrier.  Fish were collected through a one-pass backpack electrofishing 
technique (Tabor et al. 2007).  For pools, personnel slowly moved upstream and collected 
stunned fish with dip nets.  For riffles, we used frame nets that have a rigid metal frame 
with a 2-m wooden handle so that they can easily be held in place in swift water.  The nets 
were 74-cm wide and 31.5-cm high with a 4-mm stretch mesh.  One or two frame nets were 



Monitoring for Adaptive Management 

King County Science and Technical Support Section  B-6 April 2015 

placed in the water.  We then shocked an area approximately 3-m upstream from the nets 
by the width of the frame nets.  Stunned fish floated downstream into the frame nets.  With 
frame nets, all size classes of sculpin were captured; however, when stunned fish are 
visually netted in pools, small sculpin < 50 mm total length (TL) may be underrepresented 
because they are difficult to observe and net.  All fish were identified and then measured 
for length (nearest mm); total length (TL) for sculpin and lamprey and fork length for other 
fish species. Due to some uncertainty in classification and distribution of riffle and 
reticulate sculpin (C. perplexus), we combined all sculpin with these characteristics into one 
category labeled riffle sculpin for our study (Tabor et al. 2007). 

Habitat measurements.--  After fish were collected and processed, each habitat unit was 
surveyed for length, width, maximum and outlet pool depth, and substrate composition 
(visual estimate of percent sand, gravel, cobble, and boulder). 

Table 1. -- Sample month, physical characteristics, and presence of upland sculpin species 
for 18 streams in Puget Sound lowland streams.  Both lowland sculpin species (coastrange 
sculpin and prickly sculpin) were present at each site except East Fork Issaquah Creek, 
Issaquah Creek, Lund’s Gulch Creek, and North Fork Issaquah Creek where only coastrange 
sculpin were present.  

Stream type Mean

  Area Date Elevation wetted Maximum Upland

Stream name month-year River km (m) width (m) depth (m) Barrier type (number) species present

Without upland species

  Lake Washington Basin

Idylwoood Creek June-13 0.2 14 2.05 0.45 Concrete weirs (7)

Kelsey Creek August-13 0.0 6 5.92 0.95 Metal weirs (5)

Lyon Creek August-13 0.3 9 2.40 0.68 Metal weir (1)

Taylor Creek April-06 0.1 6 2.11 0.58 Waterfall (1)

Thornton Creek August-05 0.2 11 4.58 0.68 Concrete weirs (4)

  Other Puget Sound streams

Chuckanut Creek September-13 0.5 15 3.06 0.46 Metal weirs (3)

Glendale Creek September-13 0.1 7 1.41 0.39 Log weirs (3)

Lund's Gulch Creek August-13 0.2 7 2.43 0.36 Log weirs (5)

Oyster Creek September-13 0.3 8 1.90 0.52 Waterfall (1)

Perrinville Creek August-13 0.1 12 2.09 0.90 Perched culvert (1)

Piper's Creek July-13 0.1 5 3.32 0.55 Log weirs (9)

With upland species

  Lake Washington Basin

Coal Creek June-13 1.3 13 4.56 0.78 log (5) and metal (4) weirs torrent

East Fork Issaquah Creek June-13 6.1 49 5.63 0.95 Log weirs (8) riffle, shorthead

Issaquah Creek August-13 5.6 26 8.56 1.55 Concrete weir (1) riffle, shorthead

Little Bear Creek July-13 0.2 10 4.90 0.78 Weir (3) shorthead

North Fork Issaquah Creek September-14 4.6 28 2.57 0.60 Boulder weir (1) riffle, shorthead

Swamp Creek August-14 3.1 17 7.03 1.20 Boulder weir (1) shorthead

  Other Puget Sound streams

Goldsborough Creek October-14 3.9 19 9.60 1.10 Concrete weirs (36) riffle, shorthead
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Figure 1.-- Map of Puget Sound, Washington showing the location of 18 lowland streams 
used to assess the effect of small barriers on populations of sculpin.  Solid dots represent 
the location of each barrier assessed in this study.  



Monitoring for Adaptive Management 

King County Science and Technical Support Section  B-8 April 2015 

Results 

Streams without upland sculpin species 

Relative abundance.— In streams without upland sculpin, lowland sculpin were found 
upstream of the barrier in only 3 of 11 streams (Figure 2) and in these three streams, the 
abundance of lowland sculpin was substantially higher immediately downstream of the 
barrier than upstream of the barrier. 

Species composition.— In 10 of 11 streams, coastrange sculpin was the most abundant 
sculpin species collected (Figure 3).  The only exception was Kelsey Creek which did not 
have any riffle habitat downstream of the barrier.  For all streams and both habitat types 
combined, coastrange sculpin made up 77% of the sculpin collected.  Coastrange sculpin 
made up 91.7% of the sculpin collected in riffles but only 65.0% in pools. 

Size frequency.— The few sculpin collected upstream of barriers were considerably larger 
than those collected downstream of barriers (Figure 4).  For all streams combined, the 
mean size of sculpin downstream of the barriers was 63.5 mm TL while it was 96.6 mm TL 
upstream of the barrier.  Maximum sculpin size collected was 120 mm TL for coastrange 
sculpin and 159 mm TL for prickly sculpin. 
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Figure 2.— Comparison of the relative abundance (mean number/m2 ± range) of lowland 
sculpin species (coastrange sculpin and prickly sculpin combined) between habitat units 
immediately downstream and upstream of small barriers in 11 Puget Sound streams.  Data 
are from one-pass electrofishing surveys.  ND = no data.  Numbers above bars are instances 
when the number of habitat units sampled was not equal to three. 
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Figure 3.—  Species composition (percent) of two lowland sculpin species in two 
habitat types of 11 Puget Sound streams.  The number above each bar is the total 
number of sculpin collected.  ND = no data. 
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Figure 4.—  Combined length frequency (10-mm TL increments) of lowland sculpin 
(coastrange sculpin and prickly sculpin combined) collected immediately downstream and 
upstream of small barriers in 11 Puget Sound streams.  No other sculpin species were 
present in these streams.  The total number of sculpin is also indicated.   

Streams with lowland and upland sculpin species 

Relative abundance.— In four streams (Coal, East Fork Issaquah, Issaquah, and Little Bear 
creeks) lowland sculpin (especially coastrange sculpin) were abundant downstream of the 
barrier and were either absent or rare upstream of the barrier (Figure 5).  In contrast, 
upland sculpin were rare downstream of the barrier and abundant upstream of the barrier 
in these four streams.  In Goldsborough Creek, lowland sculpin were only present 
downstream of the barrier; however, their abundance in this reach was substantially lower 
than upland sculpin.  In the other six streams, the percentage of lowland sculpin 
downstream of the barrier ranged from 41.3 to 99.5%; however, in Goldsborough Creek 
they made up only 9.7% of the sculpin.  The barriers in North Fork Issaquah Creek and 
Swamp Creek were small boulder weirs which did not appear to be major barriers to 
lowland sculpin.  However, the overall abundance of lowland sculpin was higher 
downstream of the barrier than upstream for pools and riffles in both streams (Figure 5).  
The abundance of upland sculpin was not dramatically different between downstream and 
upstream of the barrier. 
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Species composition.— Except for Goldsborough and Swamp creeks, coastrange sculpin was 
the dominant sculpin species downstream of the barrier in both pools and riffles (Figure 6).  
Prickly sculpin only made up a major portion of the sculpin in Little Bear and Swamp 
creeks and were found primarily in pools.  Torrent sculpin were only present in Coal Creek 
and were the only upland species present in that system.  Riffle sculpin and shorthead 
sculpin were sympatric in East Fork Issaquah, Goldsborough, and Issaquah creeks with 
riffle sculpin found primarily in pools and shorthead sculpin found primarily in riffles.  
Both species were present in North Fork Issaquah Creek; however, shorthead sculpin were 
rare.  Shorthead sculpin were allopatric upstream of the barrier in East Fork Issaquah 
Creek and occupied all pools and riffles. 

Size frequency.—Lowland sculpin collected upstream of the barriers were considerably 
larger than those collected downstream of the barriers (Figure 7).  For all streams 
combined, the mean size of lowland sculpin downstream of the barrier was 54.6 mm TL 
while it was 80.0 mm TL upstream of the barrier.  Maximum lowland sculpin size collected 
was 131 mm TL for coastrange sculpin and 179 mm TL for prickly sculpin.  In Coal Creek 
(only stream with torrent sculpin), most torrent sculpin downstream of the barrier were 
either 40 to 60 mm TL or were > 120 mm TL (Figure 8).  Upstream of the barrier, most fish 
were 40 to 80 mm TL and few fish were > 100 mm TL.  In Goldsborough Creek, where large 
numbers of upland sculpin were present downstream and upstream of the barrier, both 
riffle sculpin and shorthead sculpin were slightly smaller upstream of the barrier than 
downstream.  For the other streams combined, there was little difference in upland sculpin 
size between those downstream and upstream of the barrier.  Maximum size was 107 mm 
TL for riffle sculpin, 102 mm TL for shorthead sculpin, and 135 mm TL for torrent sculpin. 
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Figure 5.— Comparison of the relative abundance (mean number/m2 ± range) of sculpin 
species between habitat units immediately downstream and upstream of small barriers in 
seven Puget Sound streams.  Data are from one-pass electrofishing surveys.  Lowland 
species consist of coastrange sculpin and prickly sculpin.  Upland species consist of riffle 
sculpin, shorthead sculpin, and torrent sculpin.  Three habitat units were sampled for each 
habitat type and location except only two pools were surveyed at each location in North 
Fork Issaquah Creek and the sample of habitat units sampled downstream of the barrier in 
Issaquah Creek was two pools and four riffles. 
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Figure 6.— Species composition (percent) of five sculpin species immediately downstream 
(D) and upstream (U) of small barriers in two habitat types of seven Puget Sound streams.  
The number above each bar is the total number of sculpin collected.  EF Issa = East Fork 
Issaquah Creek, Golds = Goldsborough Creek, Issa – Issaquah Creek, LBear = Little Bear 
Creek. NF Issa = North Fork Issaquah Creek. 
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Figure 7.— Combined length frequency (10-mm TL increments) of lowland sculpin 
(coastrange sculpin and prickly sculpin combined) collected immediately downstream and 
upstream of small barriers in seven Puget Sound streams.  Upland sculpin species were also 
present in these streams.  The total number of sculpin is also indicated. 
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Figure 8.— Length frequency (10-mm TL increments) of upland sculpin (riffle sculpin, 
shorthead sculpin, and torrent sculpin) collected immediately downstream and upstream 
of small barriers in seven Puget Sound streams.  The Other Streams panel includes the 
combined results for East Fork Issaquah, Issaquah, Little Bear, North Fork Issaquah, and 
Swamp creeks.  Torrent sculpin were only collected in Coal Creek and were the only upland 
sculpin in this stream.  Lowland sculpin species were also present in all streams.  The total 
number of sculpin is also indicated. 
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Discussion 

Previous studies have found that sympatric freshwater sculpin are often spatially 
segregated (Mason and Machodori 1976; Finger 1982; Tabor et al. 2007).  Our results also 
appear to support these findings.  Prickly sculpin and riffle sculpin generally inhabited 
quiet waters with prickly sculpin inhabiting reaches downstream of the barrier and riffle 
sculpin inhabiting reaches upstream of the barrier.  Coastrange sculpin and shorthead 
sculpin were common in riffles with coastrange sculpin inhabiting reaches downstream of 
the barrier and shorthead sculpin inhabiting reaches upstream of the barrier.  In streams 
without major barriers such as the Cedar River (Tabor et al. 2007), the relative abundance 
of lowland and upland sculpin gradually switches in upstream reaches but barriers provide 
a sharp delineation between the two groups.  Lowland sculpin species appear to be 
dominant over upland sculpin species and upland sculpin are only abundant when lowland 
species are rare or absent. 

Goldsborough Creek was unique in that coastrange sculpin and prickly sculpin were not the 
dominant sculpin species below the barrier or close to the stream mouth.  Both shorthead 
sculpin and riffle sculpin were more abundant than coastrange sculpin and prickly sculpin 
immediately below the barrier and close to the stream mouth.  Other studies of Puget 
Sound and Olympic Peninsula streams have not documented lower stream reaches where 
shorthead sculpin and riffle sculpin are more dominant than lowland sculpin species 
(Mongillo and Hallock 1997; Tabor et al. 2007).  For example, Mongillo and Hallock (1997) 
found the minimum elevation of shorthead sculpin in eight major drainages on the Olympic 
Peninsula was 171 m.  The shoreline area near the Goldsborough Creek estuary in highly 
developed which includes a large lumber mill.  Habitat degradation in the estuary could 
reduce recruitment of coastrange sculpin and prickly sculpin; whereas riffle sculpin and 
shorthead sculpin can complete their life cycle in a small stream area and may be favored 
over species that are associated with the estuary. 

Indicators of stream health have often included sculpin in the analysis.  The F-IBI (fish 
index of biotic integrity) developed for Puget Sound lowland streams incorporates a 
sculpin abundance (percent of total fish collected) metric which is one of six metrics used 
in the index (Matzen and Berge 2008).  Other metrics are also based on the percent of total 
fish collected and sculpin abundance can directly affect the scores of these other metrics.  
Therefore, small sculpin barriers may artificially reduce F-IBI scores and underestimate 
stream health.  Because sculpin are often abundant and can affect macroinvertebrates 
populations, they could even affect B-IBI scores (benthic invertebrate index of biotic 
integrity). 

In conclusion, our results clearly showed that small barriers can have a major effect on the 
distribution and abundance of sculpin.  This was particularly evident in small streams 
where lowland sculpin are the only sculpin species present.  Many barriers were close to 
the stream mouth and thus a large amount of potential sculpin habitat is unavailable.  Fish 
passage requirements are usually based on passage of salmonids and movements of sculpin 
and other small, native fishes are not considered.  Some of the barriers we examined, such 
as log weirs, were installed to help restore stream habitat. While they improve stream 
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habitat conditions (e.g. pool depth and frequency), they may have the unintended 
consequence of reducing sculpin populations, which in turn may impact the overall health 
of the ecosystem and the ultimate effectiveness of the restoration activity.   
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