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A persistent isotherm tilt was observed during the early spring diatom bloom, the 

isotherms had an upward tilt from north to south.  Concurrently, phytoplankton 

biovolume concentrations showed different concentrations near the northern, central, 

and southern parts of the lake, phytoplankton concentrations were higher at the 

central part. 

 

The persistent tilt was caused by frequent northward wind events with wind period 

being less than one-forth the first mode internal wave period.  The Wedderburn 

Number was generally less than two and often times less than one, which indicated a 

strong relation between the isotherm tilt and wind stress.  Isotherm response was 

functionally described by the Wedderburn Number.  This condition indicated the 

isotherm response behaved as a forced system.  The northward winds maintain the 

observed isotherm tilt and transported surface water and phytoplankton downwind. 

 

The isotherm tilt created a variable mixed layer depth with deeper mixing at the north 

end (downwind) and shallower mixing at the south end (upwind).  At the north end, 

the deeper mixing reduced the depth integrated photosynthesis compared to the 

south end of the lake.  At the south end of the lake, hydrodynamics that maintained 

the tilt also caused bottom water to upwell; the upwelled water was transported 



 

downwind.  The upwelled water diluted the phytoplankton biomass and the 

downwind currents transport them out of the area faster than they could grow.  

These conditions reduced the effective phytoplankton growth rate at the north and 

south ends compared to the central region.  The bloom occurred when vertical 

mixing relaxed and the phytoplankton growth rate exceeded vertical diffusive fluxes 

out of the euphotic zone, but vertical diffusion balanced sinking. 
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